FOREWORD

Marconi Valves are designed by wireless experts—the men who made wireless, the men responsible for to-day's progress in wireless.

A moment's comparison demonstrates their superior efficiency throughout the range, shown by the lower impedances or higher magnification factors. Actual experience confirms their absolute dependability and uniformly long life.

The first thermionic valve; the first dull-emitter; the first power valve; the first British A.C. valves; the first practical screen-grid valve; each and all have been identified with the name of Marconi. And now once again this untiring research benefits users of Marconi valves with improved characteristics for the standard "Economy" range, new Screen-grid types, Pentode Power Valves, Super-power Valves and directly heated A.C. Valves.

Marconi Valves have indeed passed from superiority to supremacy, offering an unapproached range suitable for every radio purpose—each type the best of its kind.

The principal broadcasting and experimental stations throughout the World are equipped with Marconi valves. Wherever absolute reliability is essential, Marconi Valves are used. Despite their exceptional efficiency there is nothing freakish, nothing which experience has not approved of; every Marconi Valve is perfectly dependable and upholds the best British standards.

INDEX

FOR TWO-V	OLT ACCUMU	LATORS.						
Type		Description.					\mathbf{p}_{3}	ge No.
S 215	SCREEN	GRID, H.F. AMI	PLIFIER					7
DEH	210 RISISTA	NCE CAPACITY A	MPLIFIER					9
DEL		L PURPOSE						9
HL 2		ETECTOR AND L.F						11
	215 1 5 0	ETECTOR AND LA	. Pusit Life			* *		13
DEP		OWER AMPLIFIER		* *			* *	15
DEP		OWER AMPLIFIER	* *	* *	**	* *	* *	
PT 2	35 Pentod	E	• • •	* *	••	• •	* *	57
FOR FOUR-	OLT ACCUM	ULATORS.						
S 410	Concess	GRID H.F. AMP	TETED					17
				wn Dr	TECTOR	**		19
DEH		NCE CAPACITY A						19
DEL		L PURPOSE					* *	
DEP		OWER AMPLIFIER						21
P 425	L.F. Pe	OWER AMPLIFIER	• •	• •	• •			23
FOR SIX-VO	LT ACCUMUL	ATORS.						
			. columb					27
S 625		GRID H.F. AMPI	LIFIER	* *		**	P. K.	
S 610				* *		* *		25
DEH	610 RESISTA	NCE CAPACITY AS	MPLIFIER /	IND DE	FECTOR	++	+ >	29
DEL	610 GENERA	L PURPOSE	**					29
HL 61		ETECTOR AND AM		* *				31
DEP		OWER AMPLIFIER						33
P 625		OWER AMPLIFIER						35
				* *	••			37
P 625		OWER AMPLIFIER	-0	• •	• •			
DE 5		WER AMPLIFIER	2	.,	• •			39
DE 5A		WER AMPLIFIER	20%.					39
DE 5E	L.F. Po	WER AMPLIFIER	47		+ +			39
LS 5	L.F. Po	WER AMPLIFIER	×.0					41
LS 5A		WER AMPLIFIER		-				41
LS 5B		WER AMPLIFIER		Co				41
LS 6A		WER AMPLIFIER		0				43
Las on	hat i i o	Mar Taris Con Con		. (77		70.0	
WITH INDI	RECTLY HEAT	TED CATHODE			1			
KHI	Hieu o	R LOW FREQUEN	ev Ampri	PIED AN	n Dete	CTOR		45
KLI		L PURPOSE	CI TIMPLE	LIEN MA	D LILL	~101	• •	45
KL I	GENERA	IL FURPOSE	• • •	••	••	••	• •	13
FOR OPERA	TION FROM A	A.C. MAINS.						7
0.0		0 110 1						47
S.8		GRID H.F. AMP						
H.8		RESISTANCE CAPAC						49
HL.8	A.C. H	IGH FREQUENCY	AND LOW	FREQUE	NCY A	MPLIFE	ER	51
P.8	A.C. L	OW FREQUENCY A	ND POWE	R AMPL	IFIER			53
PT.8	PENTOD							55
			0,000					
RECTIFYING	VALVES.							
II.4 I	U5, U8, U9		56 (SEC)201	2002		12.2		59-66
U 4,	0 3, 0 0, 0 3							
TRANSMITT	ING VALVES.							
T 15	T 30 T 50 T	250			27	222	123	67-68
DET	T 30, T 50, T 7	6,70 ii		*	5		ā,	68

for use with 2-volt Accumulator.

TYPE S 215

SCREENED GRID HIGH FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions, 136 × 44 m/m.

The S 215 is a specially designed high frequency amplifying valve, having four electrodes, in which the inter-electrode capacity effect, so detrimental to high frequency amplification, has been nullified by the introduction of a screening grid. The anode is connected to a terminal on the top of the valve and the screen grid to the ordinary anode pin of the valve cap.

When used in a suitable circuit and under the conditions specified on the following page a greater magnification per stage can be obtained than when using ordinary three electrode valves in a stabilised circuit.

Filament Volts ... 2.0 max.

Filament Current ... 0.15 amps.

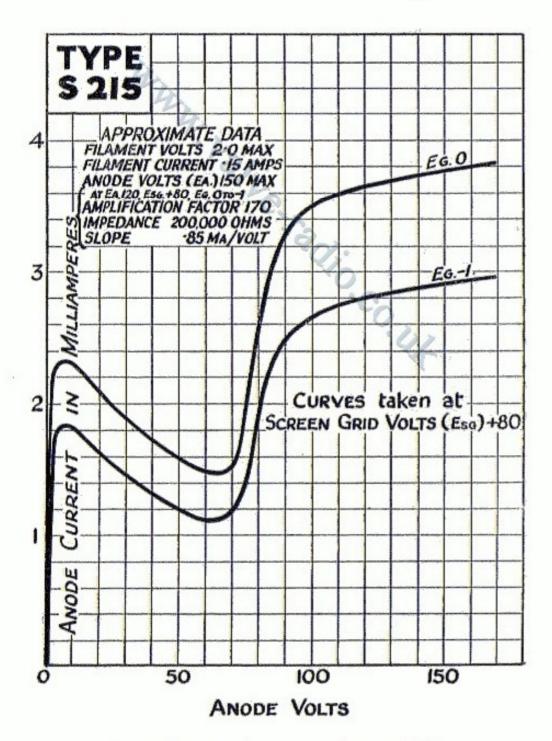
Anode volts... 100 to 150 max.

Screen Grid Volts ... 60 to 90 max.

*Amplification Factor ... 170

*Impedance ... 200,000 ohms.

*Normal Slope... ... 85 Ma/v.


*At Anode Volts 120, Screen Grid Volts 80, Grid Volts 0 to -1.

Price, 22/6.

TYPE S 215

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Screen	Negative	Anode
Grid Volts	Grid Bias Volts	Volts
80	o to 1½	120

Characteristic Curve of Average S 215 Valve.

for use with 2-volt Accumulator

TYPES DEH 210 AND DEL 210

Approximate Overall Dimensions, 95×41 m/m

TYPE DEH 210

Fil. Volts...... 2,0 max. Fil. Current..... o.1 amp. Anode Volts..... 150 max. *Amp. Factor35 *Impedance...50,000 ohms. *Normal Slope... .7 Ma/v. * At Anode Volts 100 Grid Volts o

Price, 10/6 TYPE DEL 210

Fil. Volts...... 2.0 max. Fil. Current..... o.1 amp. Anode Volts..... 150 max. *Amplification Factor ... 11 *Impedance 12,000 ohms. *Normal Slope... .9 Ma/v. *At Anode Volts 100

Grid Volts o Price, 106

TYPE DEH 210

DULL EMITTER-RESISTANCE CAPACITY AMPLIFYING AND DETECTOR VALVE

A highly efficient dull emitter valve, having a very high Amplification Factor, making it suitable for the following

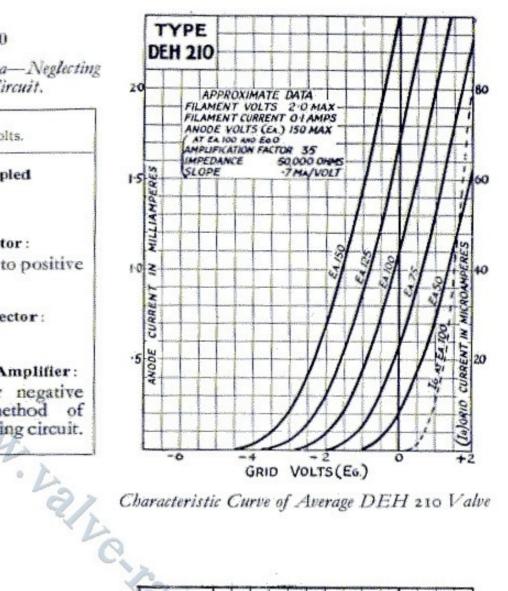
- In resistance-capacity coupled amplifiers, except in the last stages, where types DEL 210 or DEP 215 should be used.
 - 2. As a detector valve, either with grid leak and condenser or for anode bend rectification, when followed by resistance capacity coupling.
 - In high frequency amplifiers, where a circuit with some form of stabilising or damping is employed.

The maximum filament voltage is 2.0 and this figure should not be exceeded.

TYPE DEL 210

DULL EMITTER GENERAL PURPOSE VALVE

A highly efficient dull emitter valve, having characteristics which make it very suitable for the following purposes:

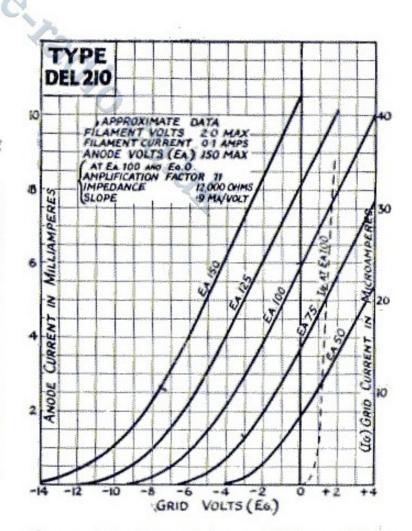

- In High Frequency amplifiers preferably where a circuit with some method of stabilising or damping is employed.
- 2. As a Detector valve using grid leak and con denser.
- In transformer or choke coupled Low Frequency amplifiers, in all stages except the last, where a DEP 215 or DEP 240 power valve should be used.

The maximum filament voltage is 2.0 and this figure should not be exceeded.

TYPE DEH 210

Approximate Operating Data—Neglecting Resistance of Output Circuit.

Anode Volts.	Grid Bias Volts.		
	In Resistance Coupled Amplifier:		
120-150	-1 ½		
50-150	As Grid Leak Detector: Connect grid leak to positive end of filament.		
75-150	As Anode Bend Detector: -1½ to -3		
75-150	In High Frequency Amplifier: Positive, zero or negative according to method of stabilising or damping circuit.		

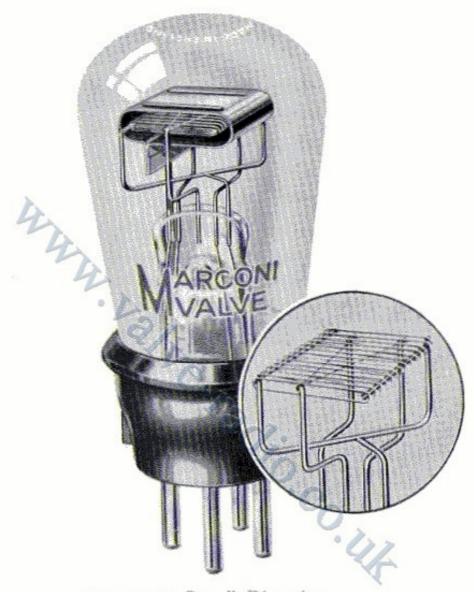


Characteristic Curve of Average DEH 210 Valve

TYPE DEL 210

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts.	Grid Bias Volts.		
50-150	In High Frequency Amplifier: Positive, zero or negative according to method of stabilising or damping circuit.		
50-150	As Grid Leak Detector: Connect grid leak to positive end of filament.		
75-150	In Low Frequency Amplifier: $-3 \text{ to } -7\frac{1}{2}$.		



Characteristic Curve of Average DEL 210 Valve

for use with 2-volt Accumulator

TYPE HL 210

DULL EMPTTER, H.F. DETECTOR AND L.F. AMPLIFYING VALVE.

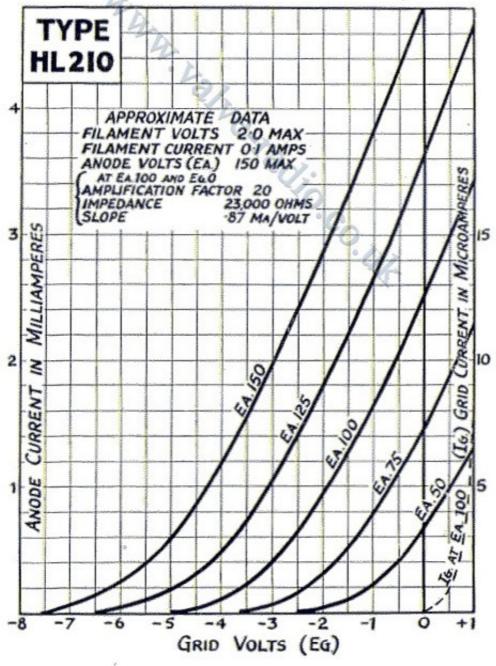
Approximate Overall Dimensions, 95 × 41 m/m.

Fil. Volts2.0 max. Fil. Currento.t amps. Anode Volts 150 max. *Amp. Factor *Impedance 23,000 ohms. *Normal Slope .87 Ma'v. *At Anode Volts 100

Grid Volts o

The HL 210 is a very efficient Dull Emitter valve, having characteristics which make it suitable for the following purposes:

- In High Frequency Amplifiers, where a circuit with some method of stabilising or damping is employed.
- As a Detector Valve.
- In Transformer or Choke-coupled Low Frequency Amplifiers, except in the last stage, where a DEP 215 or DEP 240 power valve should be used.


The maximum filament voltage is 2.0 and this figure should not be exceeded.

Price, 10/6

TYPE HL 210

Approximate Operating Data-Neglecting Resistance of Output Circuit.

	Anode Volts	Grid Bias Volts
In High Frequency Amplifier	50-150	Positive, zero or negative, ac- cording to method of stabilising or damping circuit.
As Grid Leak Detector	50-150	Connect grid leak to positive end of filament.
As Anode Bend Detector	50-150	-r½ to -6
In Low Frequency Amplifier	75-150	-1½ to -4

Characteristic Curve of average HL 210 Valve.

for use with 2-volt Accumulator

TYPE DEP 215

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

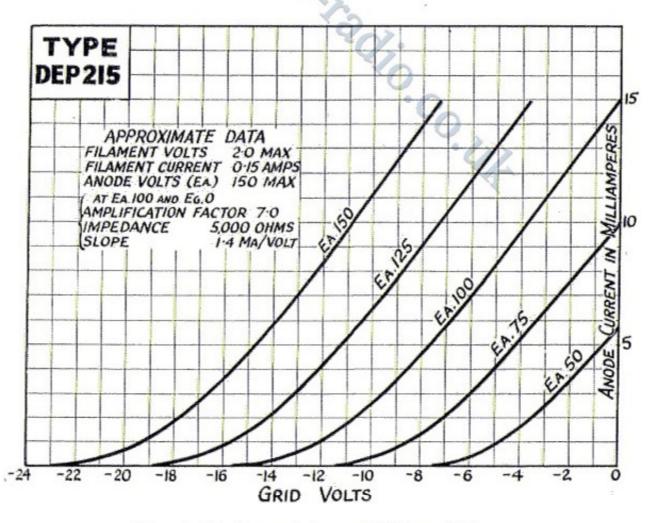
Approximate Overall Dimensions, 103 × 40 m/m.

Fil. Volts2.0 max.
Fil. Currento.15 amps
Anode Volts 150 max.
*Amp. Factor7
*Impedance5,000 ohms.
*Normal Slope 1.4 Ma/v.
*At Anode Volts 100
Grid Volts o

Price 12/6.

The DEP 215 is a low frequency power amplifying valve designed for use in the last stages of sets operating from a 2 volt accumulator.

The maximum filament voltage is 2.0 and this figure should not be exceeded.

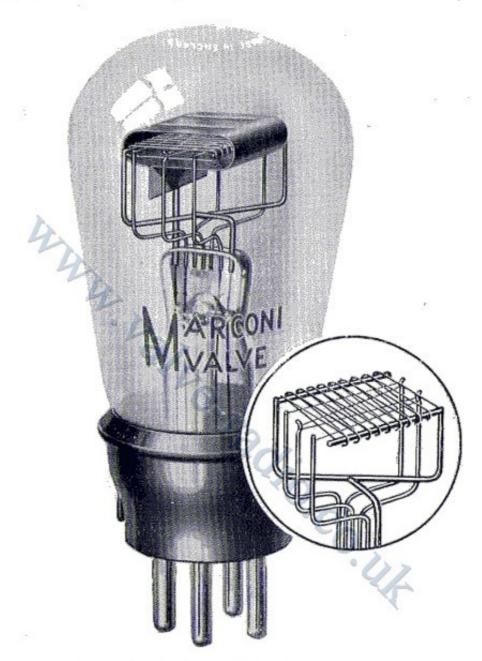

TYPE DEP 215

Type DEP 215 has exceptionally good characteristics, and if used under the conditions given below will give great amplification without distortion.

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode	Negative Grid	Average Anode Current
Volts,	Bias Volts.	in Milliamperes.
75	4½	4.5
100	7½	5.0
125	10½	6.0
150	12	8.5

When used in the last stage of a 2 or 3 valve amplifier, it is desirable to employ a high tension battery voltage of 120/150 to ensure complete absence of distortion. If used as a low frequency amplifier in stages preceding the last position, about 75 to 100 volts H.T. is suitable. In all cases the requisite grid bias as shown in the above table should be employed.



Characteristic Curve of Average DEP 215 Valve.

for use with 2-volt Accumulator

TYPE DEP 240

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

Approximate Overall Dimensions, 103 × 46 m/m.

Fil. Volts2.0 max. Fil. Currento.4 amps. Anode volts 150 max. *Amp. Factor4 *Impedance 2,500 ohms. *Normal Slope 1.6 Ma/v. * At Anode Volts o Grid Volts o

Price, 15/-

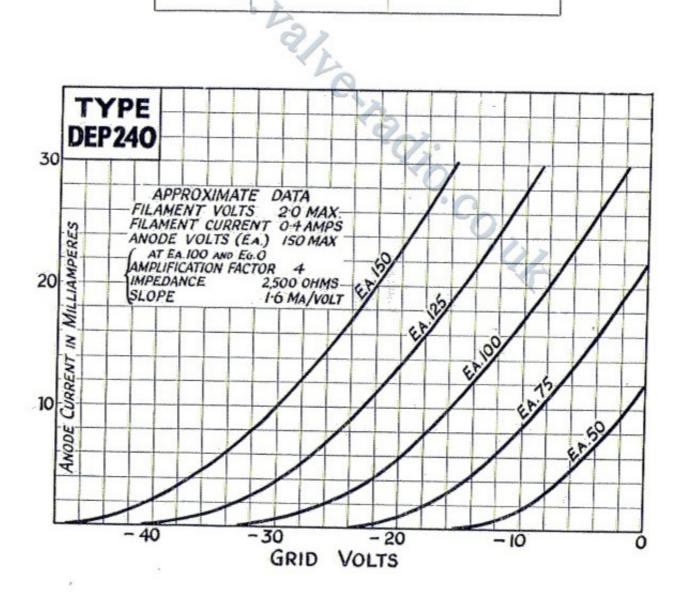
The valve has exceptionally good characteris-tics and when used with the correct values of anode voltage and negative grid bias will give a distortionless output sufficient for operating loud speakers of the larger type.

The DEP 240 is a low frequency power

amplifying valve of the super power class,

designed for use in the last stage of sets

operating from 2-volt accumulators.


The maximum filament voltage is 2,0 and this figure should not be exceeded.

TYPE DEP 240

To avoid distortion and to obtain the best results consistent with economy of high tension current the valve should be used under the conditions given below.

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Average Anode Current in Miliamperes
150	24	17
125	19.5	14
100	15	11

for use with 4-volt Accumulator.

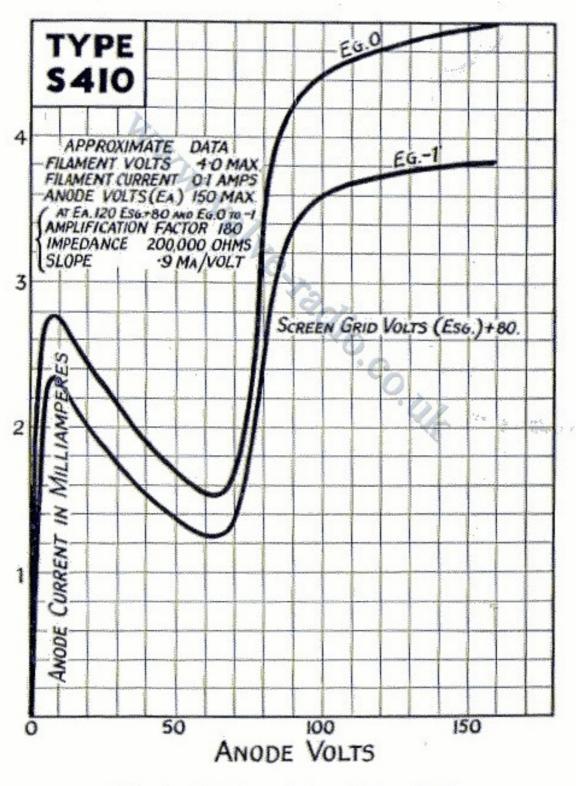
TYPE S 410

SCREEN GRID, HIGH FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions, 136 × 44 m/m.

The S 410 is a specially designed high frequency amplifying valve having four electrodes, in which the inter-electrode capacity effect so detrimental to high frequency amplification has been nullified by the introduction of a screening grid. The anode is connected to a terminal on the top of the valve and the screen grid to the ordinary anode pin of the valve cap.

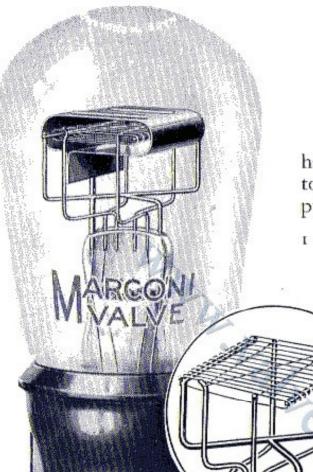
When used in a suitable circuit, a greater magnification per stage can be obtained than when using ordinary three electrode valves in a stabilised circuit.


A typical adjustment of electrode potentials is given below.

Anode	Negative	Screen
Volts	Grid Bias Volts.	Grid Volts
120	0 to 1½	80

Filament Volts			4.0 max.
Filament current			o.i amp.
Anode Volts		100 to	150 max.
Screen Grid Volts		60 to	90 max.
*Amplification Fac	tor		180
*Impedance		200,0	ooo ohms.
*Normal Slope			.9 Ma/v.
* At Anode Volts 1	20. S		

*At Anode Volts 120, Screen Grid Volts 80, Grid Volts 0 to -1.


TYPE S 410

Characteristic Curve of Average S 410 Valve.

for use with 4-volt Accumulator

TYPES DEH 410 AND DEL 410

TYPE DEH 410

Dull Emitter, Resistance Capacity Amplifying and Detector Valve.

A highly efficient dull emitter valve, having a very high "amplification factor" making it suitable for the following purposes:

- In resistance capacity coupled amplifiers, except in the last stages, where types DEL 410, DEP 410 or P 425 should be used.
 - As a detector valve, either with grid leak and condenser or for anode bend rectification.
 - In high frequency amplifiers, where a circuit with some form of stabilising or damping is employed.

The maximum filament voltage is 4.0 and this figure should not be exceeded.

Approximate Overall Dimensions, 103 × 46 m/m.

TYPE DEH 410

Fil. Volts4.0 max.
Fil. Current0.1 amps.
Anode Volts150 max.
*Amp. Factor40
*Impedance 60,000 ohms.
*Normal Slope .66 Ma/v.
*At Anode Volts 100

Grid Volts o Price, 10/6

TYPE DEL 410

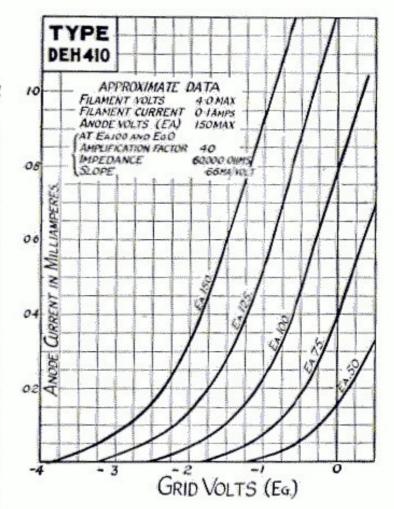
Fil. Volts 4.0 max.
Fil. Current0.1 amps.
Anode Volts150 max.
*Amp. Factor15
*Impedance ...8,500 ohms.
*Normal Slope 1.76 Ma/v.
*At Anode Volts 100
Grid Volts 0

Price, 10/6

TYPE DEL 410

DULL EMITTER, GENERAL PURPOSE VALVE.

A highly efficient dull emitter valve, having characteristics which make it very suitable for the following purposes:

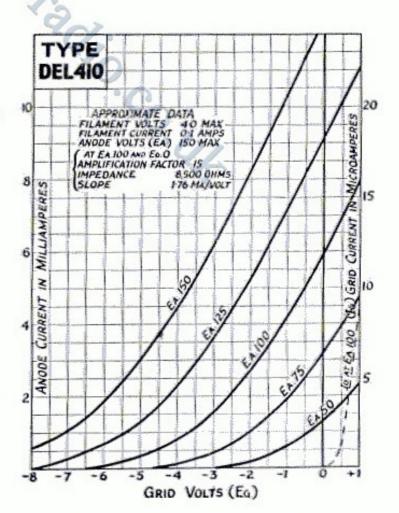

- In high frequency amplifiers where a circuit with some method of stabilising or damping is employed.
- As a detector valve using grid leak and condenser.
- In transformer or choke-coupled low frequency amplifiers, in all stages except the last, where a DEP 410 or P 425 power valve should be used.

The maximum filament voltage is 4.0 and this figure should not be exceeded.

TYPE DEH 410

Approximate Operating Data—Neglecting Resistance of Output Circuit.

Grid Bias Volts
In Resistance Coupled Amplifier:
-17
As Grid Leak Detector:
Connect grid leak to positive end of filament
As Anode Bend Detector :
-1½ to -3
In High Frequency Amplifier:
Positive, zero or negative according to method of stab- ilising or damping circuit.

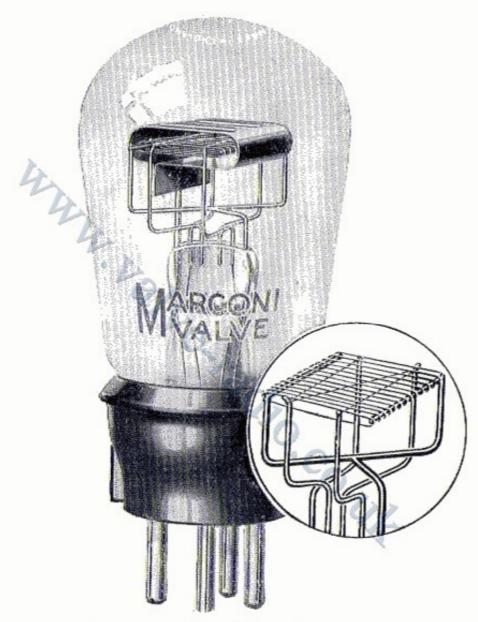


Characteristic Curve of Average DEH 410 Valve.

TYPE DEL 410

Approximate Operating Data—Neglecting Resistance of Output Circuit.

Anode Volts	Grid Bias Volts
50-150	In High Frequency Amplifier: Positive, zero or negative according to method of stabilising or damping circuit.
50-150	As Grid Leak Detector: Connect grid leak to positive end of filament.
75-150	In Low Frequency Amplifier: $-1\frac{1}{2}$ to $-4\frac{1}{2}$



Characteristic Curve of Average DEL 410 Valve.

for use with 4-volt Accumulator

TYPE DEP 410

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

Approximate Overall Dimensions, $103 \times 46 \ m/m$.

Fil, Volts4.0 max.

Fil, Current0.1 amps.

Anode Volts150 max.

*Amp. Factor7.5

*Impedance 5,000 ohms.

*Normal Slope 1.5 Ma/v.

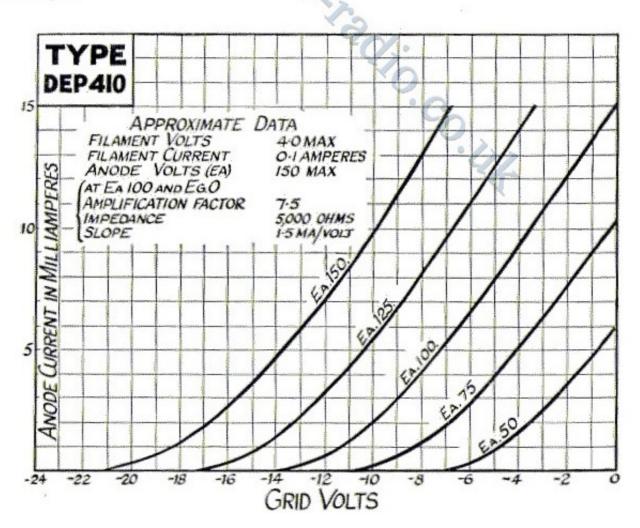
*At Anode Volts 100

Grid Volts 0

Price, 12/6.

The DEP 410 is a low frequency power amplifying valve designed for use in the last stages of sets operating from a 4 volt accumulator.

For these purposes it has exceptionally good characteristics, and if used under the conditions given on next page will give great amplification without distortion.

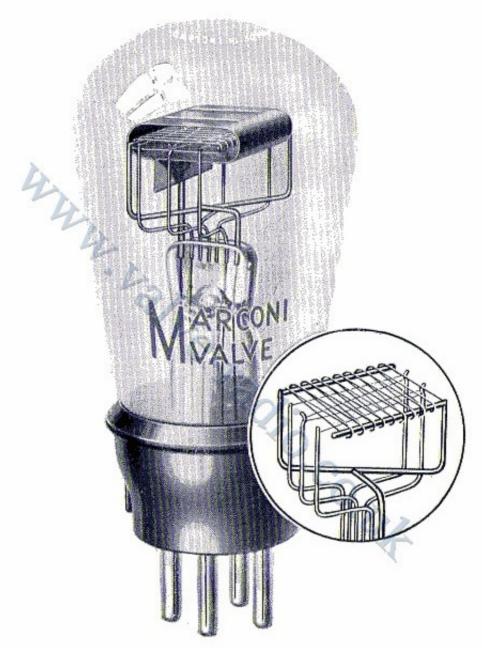

The maximum filament voltage is 4.0 and this figure should not be exceeded.

TYPE DEP 410

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Anode Current in milliamperes (approx.)
75	$4\frac{1}{2}$	4.5
100	6	6.5
125	9	6.8
150	101	9.0

When used in the last stage of a 2 or 3 valve amplifier, it is desirable to employ a high tension battery voltage of 120 to 150 to ensure complete absence of distortion. If used in a low frequency amplifier in stages preceding the last position, about 75 to 100 volts H.T. is suitable. In all cases the requisite grid bias as shown in the preceding table should be employed.



Characteristic Curve of Average DEP 410 Valve.

for use with 4-volt Accumulator

TYPE P425

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

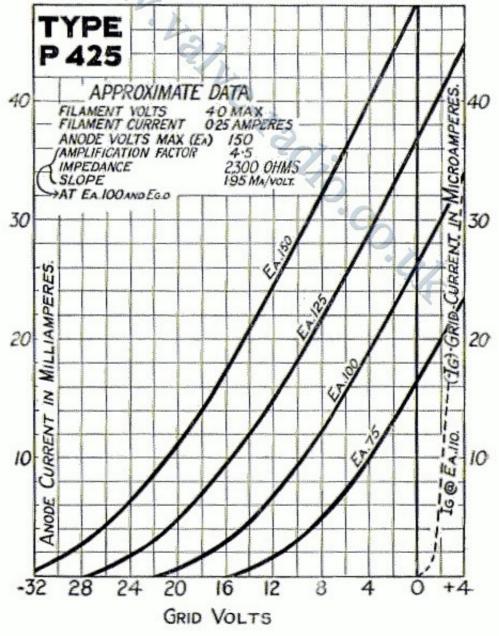
Approximate Overall Dimensions, $103 \times 46 \ m/m$.

Fil. Volts4.0 max.
Fil. Currento.25 amps.
Anode Volts150 max.
*Amp. Factor4.5
*Impedance 2.300 ohms.
*Normal Slope 1.95 Ma/v.
* At Anode Volts 100
Grid Volts o

Price, 15/-

The P 425 is a dull emitter low frequency amplifying valve of the super power class, designed for use in the last stage only of sets operating from a 4 volt accumulator.

When used with correct values of anode voltage and negative grid bias, it will give ample undistorted output for operating loud speakers of the larger type.


TYPE P 425

To avoid distortion and to obtain the best results, with the greatest economy of high tension current, a negative grid bias is necessary, approximate values of which are given below for several anode voltages.

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Negative Grid Bias Volts	Average Anode Current in milliamperes
16.5	17
12,0	15
9	11
- 6	7
The state of the s	Bias Volts

While the grid bias is being adjusted the high tension supply should be disconnected.

Characteristic Curve of Average P 425 Valve.

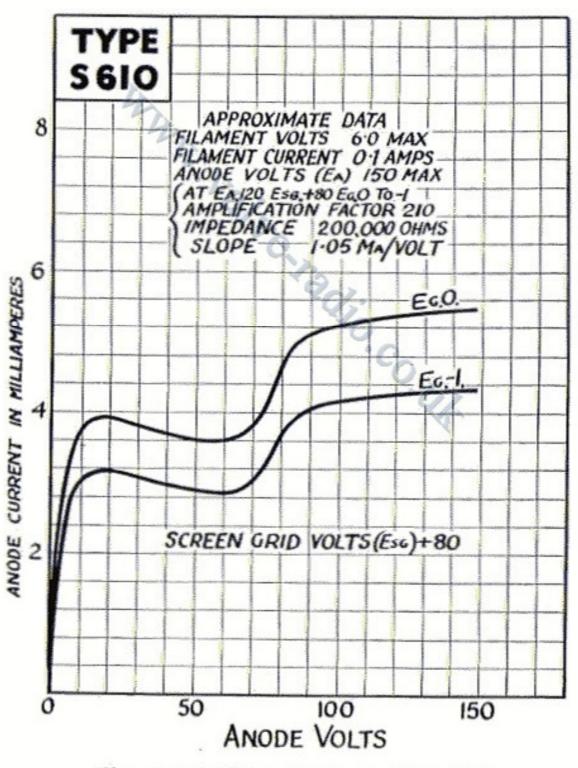
for use with 6-volt Accumulator.

TYPE S 610

SCREEN GRID, HIGH FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions, $136 \times 44 \ m/m$.

The S 610 is a specially designed high frequency amplifying valve, having four electrodes, in which the inter-electrode capacity effect, so detrimental to high frequency amplification has been nullified by the introduction of a screening grid. The anode is connected to a terminal on the top of the valve and the screen grid to the ordinary anode pin of the valve cap.


When used in a suitable circuit, a greater magnification per stage can be obtained than when using ordinary three electrode valves in a stabilised circuit.

A typical adjustment of electrode potentials is given below.

Anode	Negative	Screen
Volts	Grid Bias Volts	Grid Volts
120	o to 1½	80

Filament Volts			6.0 max.
Filament Current			o.1 amp.
Anode Volts (Ea.)	4.1.5		150 max.
Screen Grid Volts (Es	sg.)	60 1	to 90 max.
*Amplification Factor			210
*Impedance		200,	ooo ohms.
*Slope			1.05 Ma/v.
* At Anode Volts 120	, Scree	en Grid Grid Ve	Volts olts o to -1

TYPE S 610

Characteristic Curve of Average S 610 Valve.

for use with 6-volt Accumulator

TYPE S 625

SHIELDED VALVE

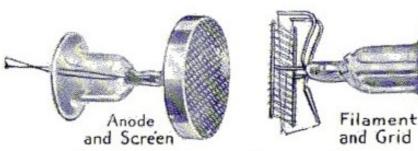
Approximate Overall Dimensions, 125 × 32 m/m.

HIGH FREQUENCY AMPLIFYING VALVE

It is well known that one of the greatest difficulties confronting the designer of a high frequency amplifier is the problem of overcoming reaction effects due to the capacity between grid and anode of the valve employed.

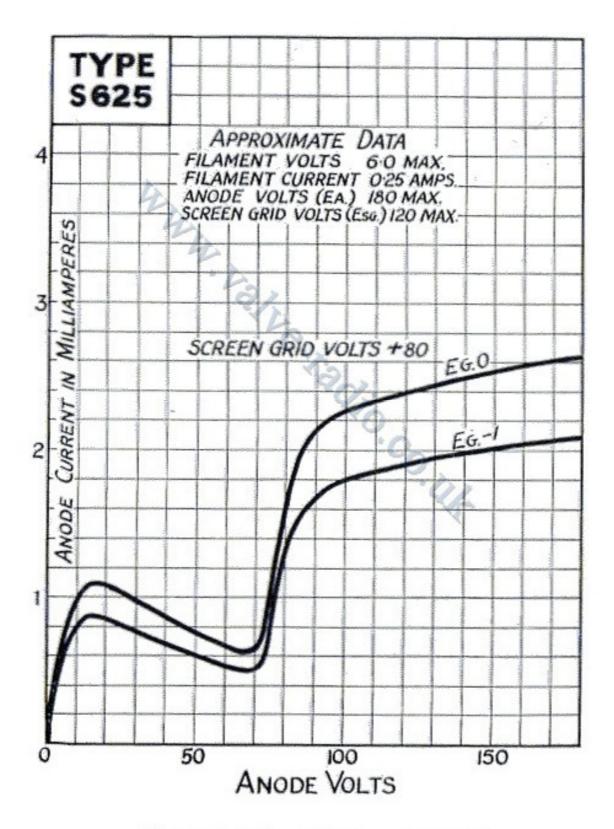
Marconi Valve S. 625 attacks the problem in a fundamental manner, by overcoming the inter-electrode capacity effect within the valve itself, and thus making neutralization unnecessary.

A fine mesh grid is interposed between the grid, which is of the standard Marconi type, and the anode—a flat circular plate with dished edges. The grid and filament are supported from one end of the glass tube and are there connected to a cap; the anode and screening grid are mounted in a similar manner at the other end of the tube, thus the capacity between the leading-in wires to the anode and grid and filament is reduced to zero.


In this way Marconi Type S 625 brings within reach an amplification of 30-50 per stage with absolute stability and maximum efficiency over a very wide range of wave-lengths, and is an important step towards reliable long distance reception.

Fil. volts ... 6.0 Fil. current ... 0.25 Anode volts ... 100-180 max.

The magnification factor and impedance vary between wide limits with variation of volts on the electrodes.


Screen Grid Volts ... 50-120 max.

Price, 22/6

Electrodes of the Marconi Shielded Valve

TYPE S 625

Characteristic Curve of Average S 625 Valve.

for use with 6-volt Accumulator

TYPES DEH 610 & DEL 610

TYPE DEH 610

DULL EMITTER, RESISTANCE CAPACITY AMPLIFYING AND DETECTOR VALVE.

A highly efficient dull emitter valve, having a very high "Amplification Factor," making it suitable for the following purposes:

- In resistance-capacity coupled amplifiers, except in the last stages, where types DEL 610, DEP 610, P 625 or P 625A should be used
 - As a detector valve, either with grid leak and condenser or for anode bend rectification, when followed by resistancecapacity coupling.
 - In high frequency amplifiers, where a circuit with some form of stabilising or damping is employed.

The maximum filament voltage is 6.0 and this figure should not be exceeded.

TYPE DEH 610

Fil. Volts.6.0 max.
Fil. Current0.1 amps.
Anode Volts150 max.
*Amp. Factor40
*Impedance...60,000 ohms.
*Normal Slope....67 Ma/v.
*At Anode Volts 100
Grid Volts 0

Price, 10/6

TYPE DEL 610

Fil. Volts6.0 max.
Fil. current0.1 amp.
Anode Volts150 max.
*Amp. Factor15
*Impedance ... 7,500 ohms.
*Normal Slope...2.0 Ma/v.
*At Anode Volts 100
Grid Volts 0

Price, 10/6

TYPE DEL 610

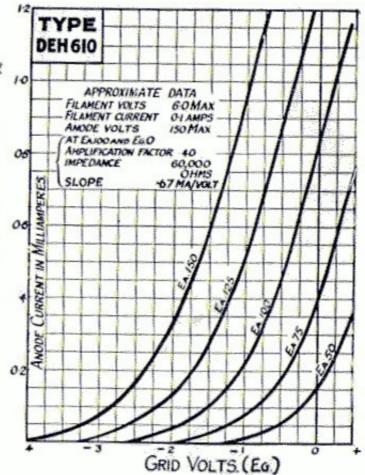
DULL EMITTER, GENERAL PURPOSE VALVE.

A highly efficient dull emitter valve, having characteristics which make it very suitable for the following purposes:

- In High Frequency amplifiers where a circuit with some method of stabilising or damping is employed.
- 2. As a Detector valve.

Approximate

Overall Dimensions, 103×46 m/m.

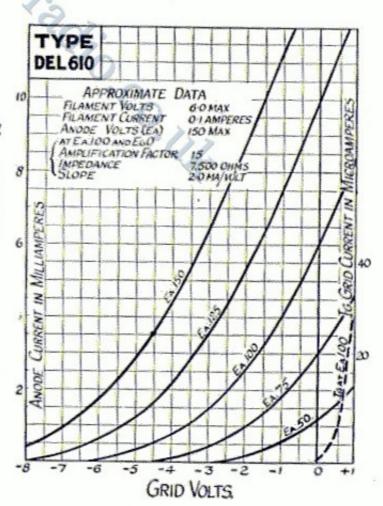

> In transformer or choke-coupled Low Frequency amplifiers, in all stages except the last, where DEP 610 Power Valve, P 625 or P 625A Super Power Valves should be used.

The maximum filament voltage is 6.0 and this figure should not be exceeded.

TYPE DEH 610

Approximate Operating Data—Neglecting Resistance of Output Circuit.

In Resistance-Coupled Amplifier: -1½ As Grid Leak Detector: Connect grid leak to positive end of filament. As Anode Bend Detector: 75-150 In High Frequency Amplifier: Positive, zero or negative according to method of stabilising or damping circuit,	Anode Volts	Grid Bias Volts	
As Grid Leak Detector: 50-150 Connect grid leak to positive end of filament. As Anode Bend Detector: 75-150 -1½ to -3 In High Frequency Amplifier: Positive, zero or negative according to method of stabilis-		In Resistance-Coupled Amplifier:	0
75-150 Connect grid leak to positive end of filament. As Anode Bend Detector: 75-150 -1½ to -3 In High Frequency Amplifier: Positive, zero or negative according to method of stabilis-	120-150	-11	
end of filament. As Anode Bend Detector: 75-150 -1½ to -3 In High Frequency Amplifier: Positive, zero or negative according to method of stabilis-	, material	As Grid Leak Detector:	0
75-150 -1½ to -3 In High Frequency Amplifier: 75-150 Positive, zero or negative according to method of stabilis-	50-150		
75-150 -1½ to -3 In High Frequency Amplifier: 75-150 Positive, zero or negative according to method of stabilis-	the state of the s	As Anode Bend Detector :	
75-150 Positive, zero or negative according to method of stabilis-	75-150	-1½ to -3	
75-150 Positive, zero or negative ac-	TIT - mobile	In High Frequency Amplifier:	
	75-150	cording to method of stabilis-	0
	1		
		27	Cl
270		L	
2/L			N



Characteristic Curve of Average DEH 610 Valve.

TYPE DEL 610

Approximate Operating Data—Neglecting Resistance of Output Circuit.

Anode Volts	Grid Bias Volts
50-150	In High Frequency Amplifier: Positive, zero or negative according to method of stabilis- ing or damping circuit.
50-150	As Grid Leak Detector: Connect grid leak to positive end of filament.
75-150	In Low Frequency Amplifier: $-1\frac{1}{2}$ to $-4\frac{1}{2}$.



Characteristic Curve of Average DEL 610 Valve.

for use with 6-volt Accumulator

TYPE HL 610

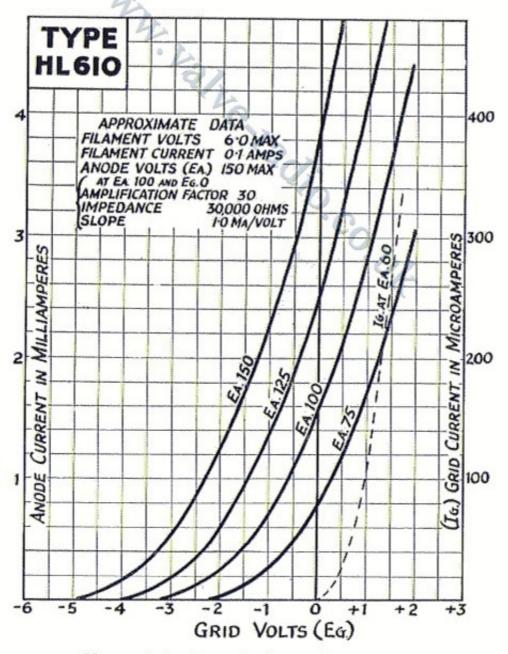
DULI EMITTER, HIGH FREQUENCY DETECTOR AND LOW FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions,

103 × 46 m/m.

Fil. Volts6.0 max.
Fil. Current0.1 amp.
Anode Volts (Ea) 150 max.
*Amp. Factor30
*Impedance 30,000 ohms.
*Normal Slope 1.0 Ma/v.
*At Anode Volts 100
Grid Volts 0

Price, 10/6.

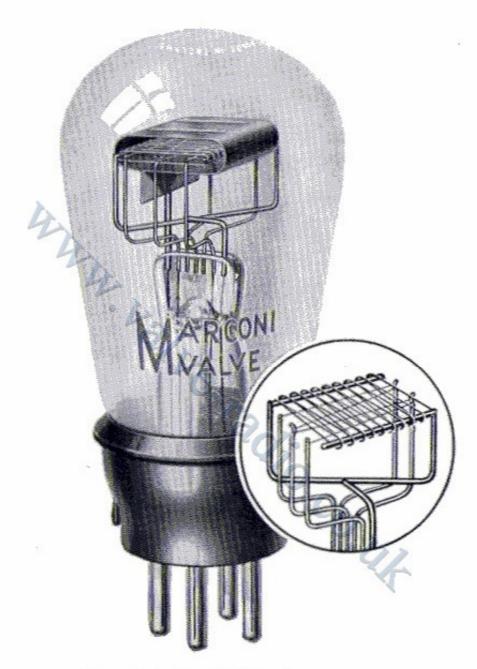

The HL 610 is a very efficient dull emitter valve, having characteristics which make it suitable for the following purposes:

- In High Frequency Amplifiers, where a circuit with some method of damping or stabilising is employed.
- 2. As a Detector Valve.
- The maximum filament voltage is 6.0 and this figure should not be exceeded.

TYPE HL 610

Approximate Operating Data-Neglecting Resistance of Output Circuit.

VOTORIATION S. C.	Anode Volts	Grid Bias Volts
In High Frequency Amplifier:	75 to 150	Positive, zero or negative according to method of stabilising or damping circuit.
As Grid Leak Detector:	75 to 150	Connect grid leak to posi- tive end of filament.
As Anode Bend Detector:	75 to 150	-1½ to -3
In Low Frequency Amplifier:	120 to 150	-1}



Characteristic Curve of Average HL 610 Valve.

for use with 6-volt Accumulator

TYPE DEP 610

DULL EMITTER, LOW FREQUENCY, POWER AMPLIFYING VALVE.

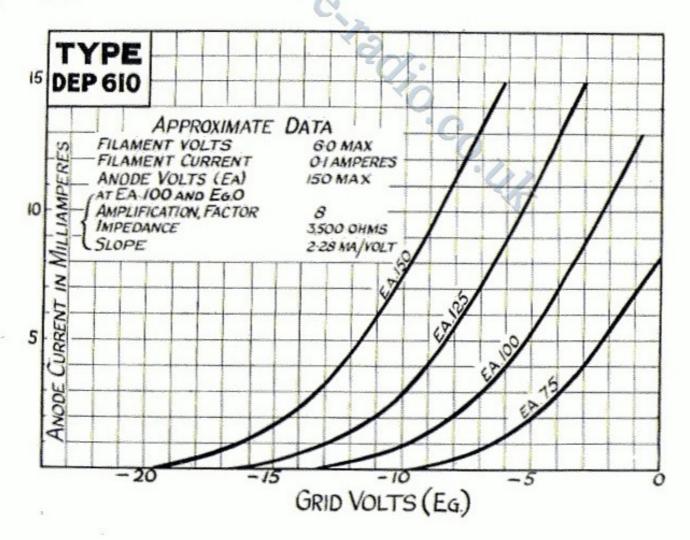
Approximate Overall Dimensions, 103 × 46 m/m.

Fil. Volts6.0 max-
Fil. Currento.1 amp.
Anode Volts150 max.
*Amp. Factor8
*Impedance 3,500 ohms.
*Normal Slope 2.28 Ma/v.
*At Anode Volts 100 Grid Volts 0

Price, 12/6.

The DEP 610 is a low frequency power amplifying valve designed for use in the last stages of sets operating from a 6-volt accumulator.

For these purposes it has exceptionally good characteristics, and if used under the conditions given on next page will give great amplification without distortion.

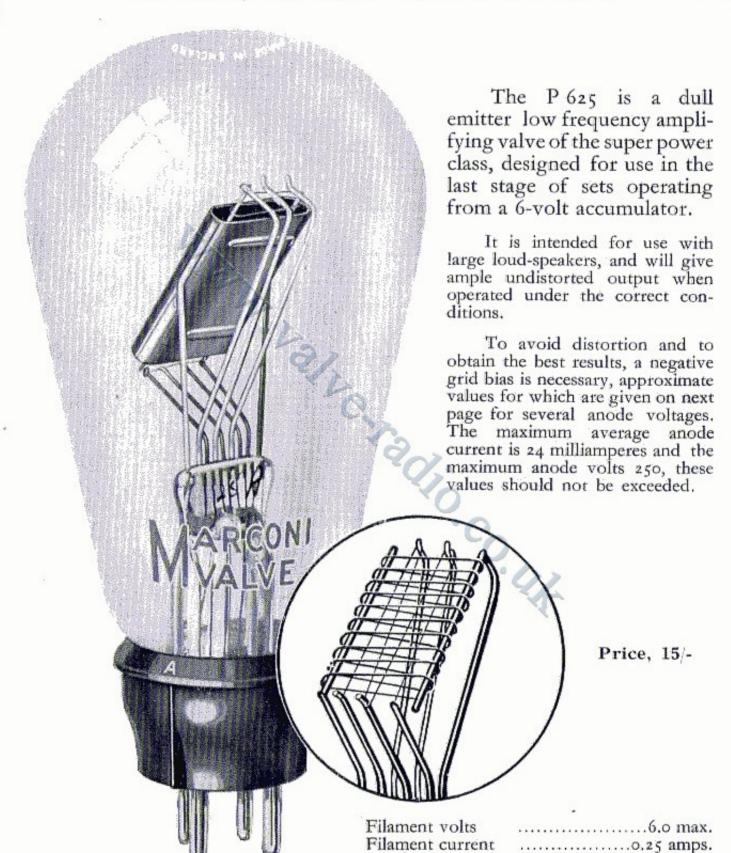

The maximum filament voltage is 6.0 and this figure should not be exceeded.

TYPE DEP 610

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Anode Current in Milliamperes (approximate)
75	41/2	2.5
100	6	4.0
125	71/2	6.5
150	9	9.5

When used in the last stage of a 2 or 3 valve amplifier, it is desirable to employ a high tension battery voltage of 120 to 150, to ensure complete absence of distortion. If used in a low frequency amplifier in stages preceding the last position about 75 to 100 volts H.T. is suitable. In all cases the requisite grid bias as shown in the preceding table should be employed.



Characteristic Curve of Average DEP 610 Valves.

for use with 6-volt Accumulators

TYPE P 625

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

Approximate Overall Dimensions, $145 \times 62 \ m/m$.

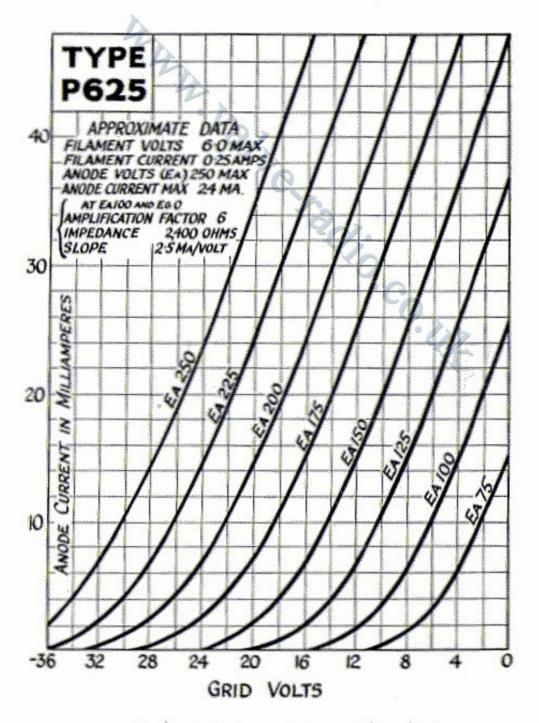
 Anode volts
 250 max.

 Anode current max
 24 milliamperes.

 *Amplification Factor.
 6

 *Impedance
 2,400 ohms.

 *Normal Slope
 2.5 Ma/v.

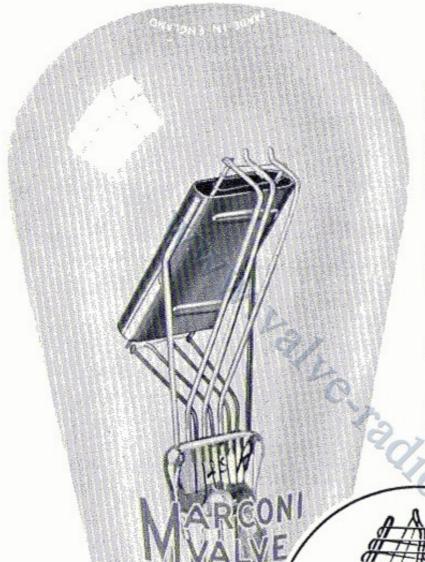

*At Anode Volts 100, Grid Volts o

TYPE P 625

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Average Anode Current in Milliamperes
250	2.4	2.4
200	18	19
150	12	14.5
100	6	10

While the grid bias is being adjusted the high tension supply should be disconnected.



Characteristic Curve of Average P 625 Valve.

for use with 6-volt Accumulator

TYPE P 625A

DULL EMITTER, LOW FREQUENCY POWER AMPLIFYING VALVE.

The P 625A is a dull emitter low frequency amplifying valve of the super power class, designed for use in the last stage of sets operating from a 6-volt accumulator.

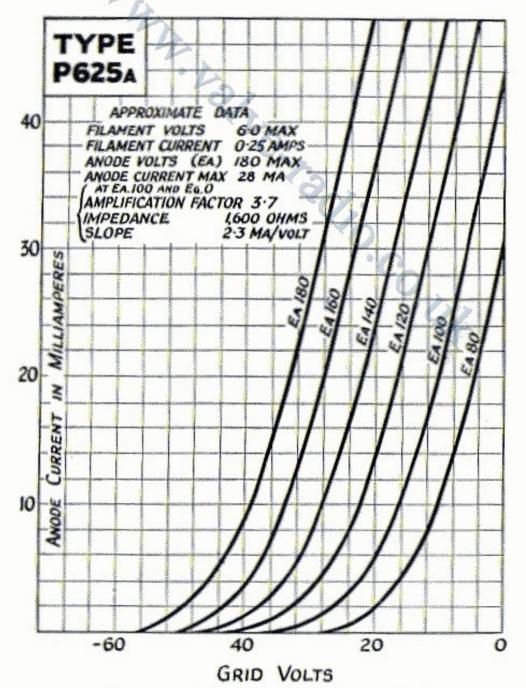
Owing to its very low impedance this valve will give an ample output for operating loud speakers without distortion.

The P625A is intended for use where the maximum anode voltage available does not exceed 180. At higher voltages than this, up to 250 maximum, type P625 should be employed.

Price, 15/-

* At Anode Volts 100, Grid Volts 0

Filament Volts 6.0 max.


TYPE P 625A

To avoid distortion and to obtain the best results, with the greatest economy of high tension current, a negative grid bias is necessary, approximate values for which are given below for several anode voltages.

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Votts	Average Anode Current in Milliamperes
180	30	28
140	21	22
100	13.5	14

While the grid bias is being adjusted the high tension supply should be disconnected.

Characteristic Curve of Average P 625A Valve.

for use with 6-volt Accumulator

TYPES DE 5, DE 5A AND DE 5B

POWER VALVES

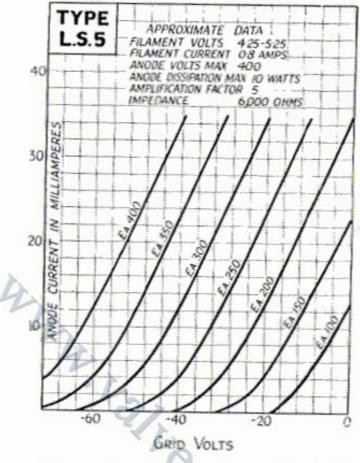
TYPE DE 5

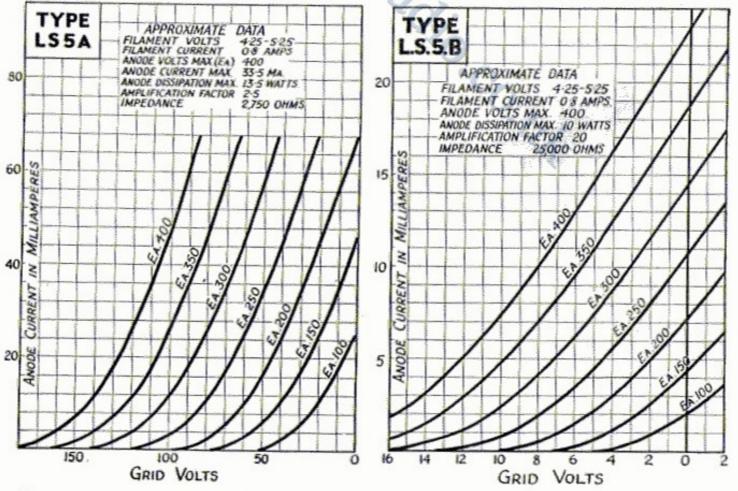
Eminently suitable for L.F. amplification. As last valve of an amplifier it requires a steady negative grid bias of -9 volts with an anode voltage of 140. Used as a detector or high frequency amplifier, the anode voltage should be of the order of 40.

TYPE DE 5a

Modified DE 5 for last stage of LF amplifier, working a loud speaker of considerable power. For this purpose the grid of the valve requires a steady negative bias of about 12 volts with an anode voltage of 80 and about 20 volts with an anode voltage of 120.

TYPE DE 5b

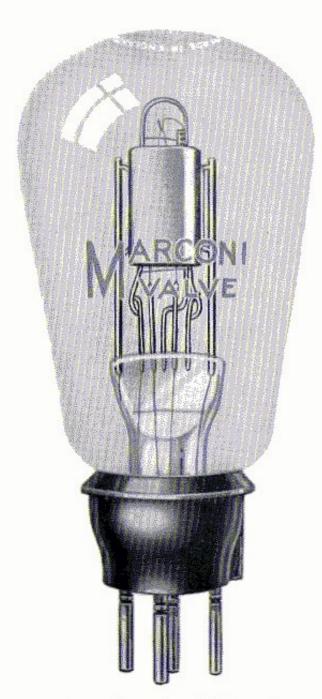

A modified DE 5 with a high amplification factor. Particularly suitable for use in choke or resistance-capacity coupled amplifiers. For audio frequency amplification the anode volts may be increased to 150. Suitable negative grid bias 1.5 to 3 volts. Type DE 5 should be used in the last stage of the amplifier. Type DE 5b can also be used as an H.F. amplifier.


Approximate Overall Dimensions, $125 \times 56 \ m/m$.

Туре	Fil. Volts	Fil. Current (Amps.)	Anode Volts	Amplification Factor	(Ohms)	Price
DE 5	5-6	0.25	140	7	7,000	12/6
DE 5a	5-6	0.25	120	3.5	4,000	15/-
DE 5b	5-6	0.25	150	20	30,000	12/6

TYPES LS 5, LS 5A AND LS 5B

Characteristic Curve of Average LS 5 Valve.


Characteristic Curve of Average LS 5a Valve.

Characteristic Curve of Average LS 5b Valve.

for use with 6-volt Accumulator

TYPES LS 5, LS 5A AND LS 5B

POWER VALVES

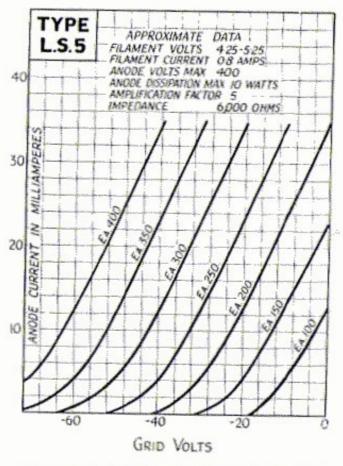
Approximate Overall Dimensions, 135 × 56 m/m.

TYPE LS5

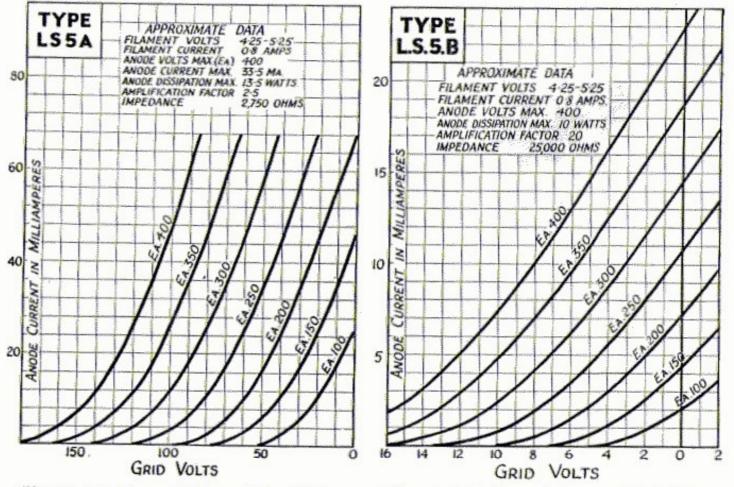
FOR POWER AMPLIFICATION.

As a transmitter the maximum permissible anode dissipation is 10 watts. The anode voltage should not exceed 400 volts.

TYPE LS5a


A modification of the LS 5, particularly suitable for the final stages of low-frequency amplifiers for large loud speakers. It will deal with considerably larger amplitudes than the L.S. 5 Valve. Maximum anode loss 13.5 watts.

TYPE LS 5b


A modified LS 5 having a high amplification factor, suitable for use in the early stages of an amplifier employing L.S. 5 and L.S. 5a types in the later stages. Maximum anode loss 10 watts.

Туре	Fil. Volts	Fil. Current (Amps.)	Anode Volts	Amplification Factor	Impedance (ohms)	Price
LS 5	4.25-5.25	.8	400	5	6,000	25/-
LS 5a	4.25-5.25	.8	400	2.5	2,750	25/-
LS 5b	4.25-5.25	.8	400	20	25,000	25/-

TYPES LS 5, LS 5A AND LS 5B

Characteristic Curve of Average LS 5 Valve.

Characteristic Curve of Average LS 5a Valve.

Characteristic Curve of Average LS 5b Valve.

for use with 6-volt Accumulator

TYPE LS 6A

DULL EMITTER POWER AMPLIFYING VALVE.

Approximate Overall Dimensions, $145 \times 62 \ m/m$.

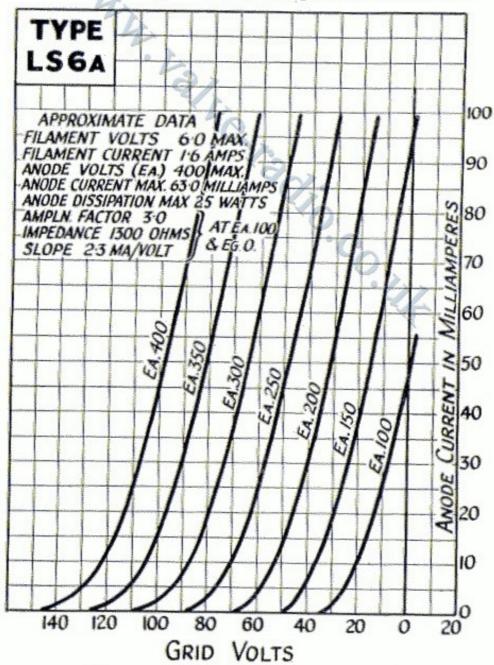
The LS 6A is a high power amplifying valve giving a large undistorted power output.

It is intended for use in the last stage of low frequency amplifiers, where ample power is available for the anode supply.

When operating the LS 6A valve, provision should be made for sufficient air circulation to prevent over-heating. Care should be taken to switch off the anode volts when inserting or removing the valve from its socket or when any adjustments are made to the circuits, such as alteration to grid bias.

The maximum average anode current is 63.0 milliamperes and the maximum anode volts 400. To obtain the full emission life these values should not be exceeded.

The LS 6A is designed to operate at a maximum filament voltage of 60. At this the emission from the filament is very large, and in many cases it will be found satisfactory and economical to run at a filament voltage between 60 and 5.25.

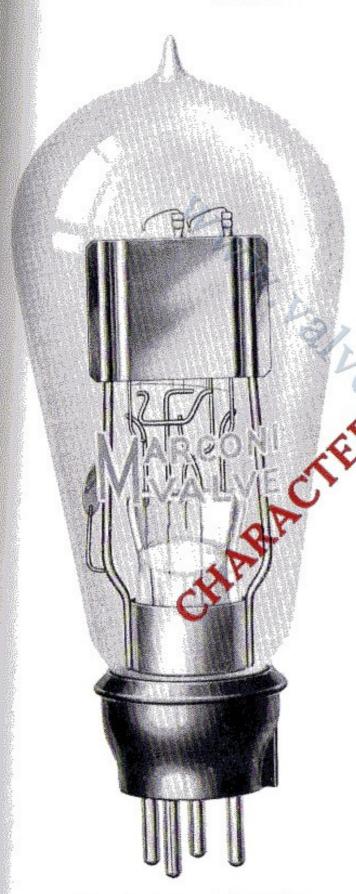

Filament Volts			6.0 max.
Filament Current			1.6 amps.
Anode Volts			400 max.
Max. Anode Dissi	pation		25 watts
*Amplification Fact	or		3.0
*Impedance		I	,300 ohms
*Normal Slope			2.3 Ma/v
*At Anode Volts 10	oo, Grie	d Vol	ts o

TYPE LS 6A

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Average Anode Current in Milliamperes
400	93	63
350	78	60
300	63	55
250	50	47
200	36	40

The accompanying data is approximate only, and it will be found that individual valves vary about these figures. It is recommended that the negative grid bias voltage be adjusted for each valve, so as to obtain approximately the anode currents stated at the respective H.T. voltages in the above table.



Characteristic Curve of Average LS 6a Valve.

for use with 6-volt Accumulator

TYPE LS 6A

DULL EMITTER POWER AMPLIFYING VALVE.

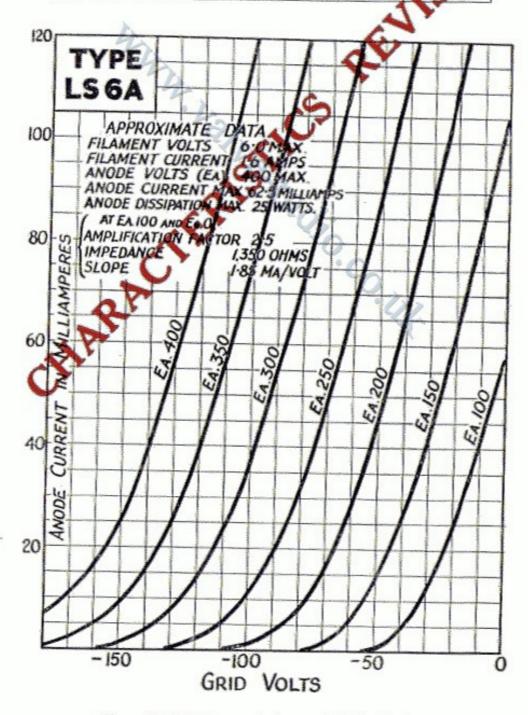
Approximate Overall Dimensions, $145 \times 62 \text{ m/m}$.

The LS 6A is a power amplifying valve designed with large power handling capacity to supply considerable undistorted volume.

It is intended for use in the last stage of low frequency amplifiers, where provision is made for adounte high tension supply.

When operating the LS 6A valve, provision should be made for sufficient air circulation to prevent over-heating. Care should be taken to switch off the power supply when inserting or removing the valve from its socket or when any adjustments are made to the circuits, such as alteration to grid bias.

The maximum average anode current is 62.5 milliamperes and the maximum anode volts 400. To obtain the full emission life these values should not be exceeded.


Filament Volts			6.0 max.
Filament Current			1.6 amps.
Anode Volts			400 max.
Max. Anode Dissi	pation		25 watts
*Amplification Fact	tor		2.5
*Impedance		1	,350 ohms
*Normal Slope		*	1.85 Ma/v.
*At Anode Volts 10	oo, Grie	d Vol	ts o

Price, 30/-

TYPE LS 6A

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Ave	rage Anode Current in Milliamperes
400	128		62.5
350	110	THE STATE OF THE S	57
300	90	1	55
250	70	-	50
200	50		45

Characteristic Curve of Average LS 6a Valves.

with indirectly heated Cathodes

TYPES KH1 AND KL1

Approximate Overall Dimensions. $145 \times 62 \ m/m$.

TYPE KH 1

Heater volts			3.5 max.
Heater current			2.0 amps.
Anode volts			150 max.
Amplification fac	tor		40
Impedance		33	,000 ohms.
Normal slope		1.	33 Ma/volt

TYPE KH 1

HIGH OR LOW FREQUENCY AMPLIFYING AND DETECTOR VALVE WITH INDIRECTLY HEATED CATHODE.

Particularly suitable for use as High Frequency Amplifier, Anode Bend Detector and in Resistance Coupled Low Frequency stages.

Specially designed to work without a Low Tension Battery where an alternating current is available.

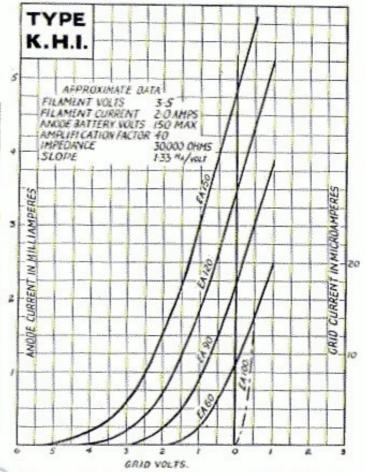
TYPE KL 1

GENERAL PURPOSE VALVE WITH INDIRECTLY HEATED CATHODE.

The type KL1 is a valve specially designed to work without a low Tension Battery. In the ordinary Thermionic valve the heater and cathode are the same, i.e. the filament. In this valve the cathode encloses a separate heating element which may be connected to the low voltage secondary winding of a transformer of suitable ratio, fed from A.C. supply mains, without introducing any objectionable hum.

Due to the very large cathode area the KL I has exceptionally good characteristics, and is suitable for purposes as shown on following page.

TYPE KL 1


Heater	Volts			3.5 volts
Heater	Current			2.0 amps
Anode	volts			150 max.
*Amplif	ication Fa	ctor		7.5
*Impeda	ince		3,	750 ohms.
*Slope				2.0 Ma/v
*At An	ode Volts	100, G	rid Ve	olts o.

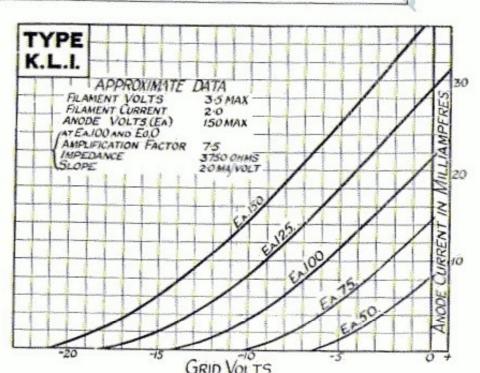
Price, 17/6.

TYPES KH 1 AND KL 1 TYPE KH 1

Approximate Operating Dat — Neglecting Resistance of Output Circuit.

Anode Volts	Grid Bias Volts.
20-40	As Grid Leak Detector:
60-150	As Anode Bend Rectifier :-
60-150	In High Frequency Amplifier: Positive, zero or negative according to method of stabilizing or damping circuit.
100-150	In Low Frequency Amplifier (not last stage):- -1½ to -2

Characteristic Curve of Average KH 1 Valve.


	Anode Volts	Grid Bias Volts
In High Frequency Amplifier	50-150	Positive, zero or negative, according to method of stabilizing or damping.
As Grid Leak Detector.	50-150	11 volts Positive.
In Low Frequency Power Amplifier	50-150	3 to 10½ volts negative.

TYPE KL 1

Approximate
Operating Data—
Neglecting Resistance
of Output Circuit.

32

Characteristic
Curve
of
Average
KL 1 Valve.

for operation from Alternating Current Mains

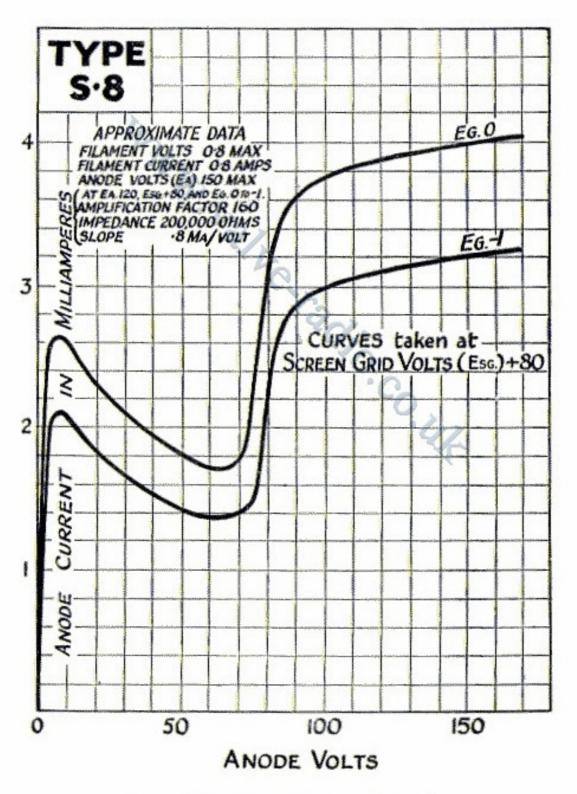
TYPE S POINT 8

DULL EMITTER A.C. SCREEN GRID HIGH FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions, 136 × 44 m/m.

The S Point 8 is a specially designed high frequency amplifying valve, having four electrodes, in which the inter-electrode capacity effect, so detrimental to high frequency amplification, has been nullified by the introduction of a screening grid. The anode is connected to a terminal on the top of the valve and the screen grid to the ordinary anode pin of the valve cap.

In addition, the filament is so constructed as to make the valve suitable for operating directly from the Alternating Current Mains through a suitable transformer, without the introduction of A.C. hum into the circuit.

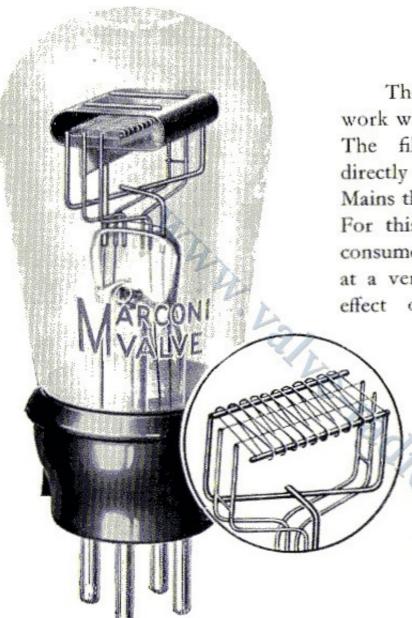

When used in a suitable circuit and under the conditions specified a greater magnification per stage can be obtained than when using ordinary three electrode valves in a stabilised circuit.

The grid return lead should be joined to the slider or centre point of a potentiometer connected aross the filament.

Anode	Negative	Screened
Volts	Grid Bias Volts	Grid Volts
120	o to 1½	80

Filament Volts ... 0.8 max.
Filament current ... 0.8 amps.
Anode volts ... 100-150 max
Screen grid volts ... 60-90 max.
*Amplification factor ... 160
*Impedance ... 200,000 ohms.
*Normal Slope ... 0.8 Ma/v.
*At Anode Volts 120, Screen Grid Volts,
80, Grid Volts 0 to -1.

TYPE S POINT 8



Characteristic Curve of Average S.8 Valve.

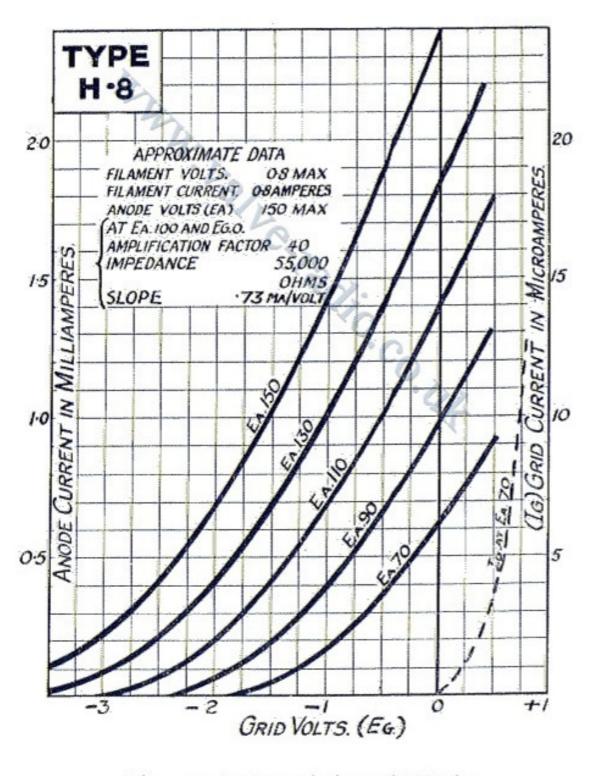
for operating from A.C. mains

TYPE H POINT 8

DULL EMITTER A.C. RESISTANCE-CAPACITY AMPLIFYING VALVE.

The H.8 is a valve designed to work without a low tension battery. The filament should be operated directly from the Alternating Current Mains through a suitable transformer. For this purpose it is constructed to consume a moderately high current at a very low voltage; this has the effect of materially reducing the

introduction of A.C. hum into the Receiving set.

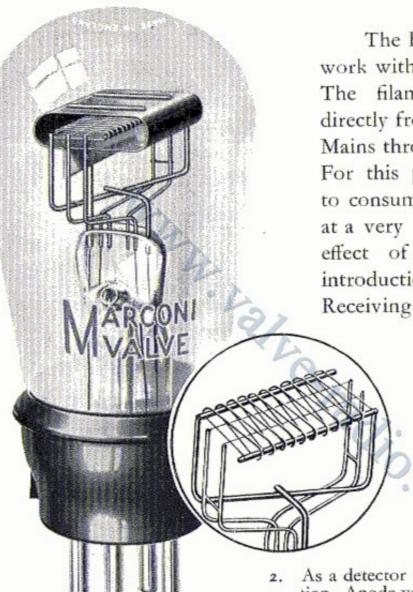

The valve has a high amplification factor, making it suitable for the following purposes

- In resistance-capacity coupled amplifiers, except in the last stages. Anode volts 150, negative grid bias 1½ volts.
- In high frequency amplifiers, where a circuit with some form of stabilising or damping is employed.
- 3. As a detector valve using anode bend rectification. Anode Volts 75 to 150, negative grid bias 1½ to 3 volt. This valve is not recommended for use as a Detector using grid leak and condenser.

Approximate
Overall Dimensions,
103 × 46 m/m.

Fil. Voltso.8 max,
Fil. Currento.8 amps,
Anode Volts 150 max.
*Amp. Factor40
*Impedance55,000 ohms.
*Normal Slope .73 Ma/v.
*At Anode Volts 100
Grid Volts o

TYPE H POINT 8



Characteristic Curve of Average H.8 Valve.

for operating from A.C. Mains

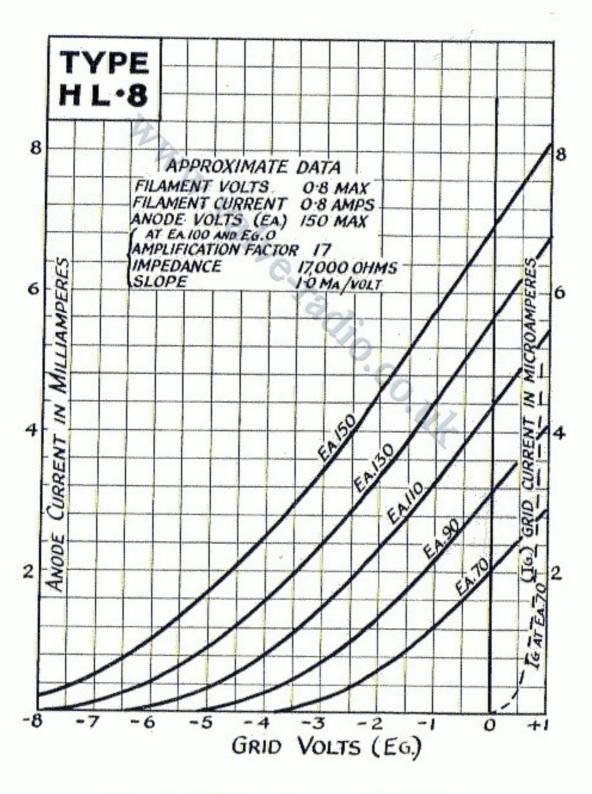
TYPE HL POINT 8

DULL EMITTER A.C. HIGH FREQUENCY AND LOW FREQUENCY AMPLIFYING VALVE.

The HL.8 is a valve designed to work without a low tension battery. The filament should be operated directly from the Alternating Current Mains through a suitable transformer. For this purpose it is constructed to consume a moderately high current at a very low voltage; this has the effect of materially reducing the introduction of A.C. hum into the Receiving set.

The Valve has characteristics making it specially suitable for the following purposes:

- fying circuits, where some form of stabilising or damping is employed.
- 2. As a detector valve using anode bend rectification. Anode volts 75 to 150, negative grid bias 3 to 7½ volts. This valve is not recommended for use as a detector using grid leak and condenser.
- 3. In the first stage of low frequency amplifiers.

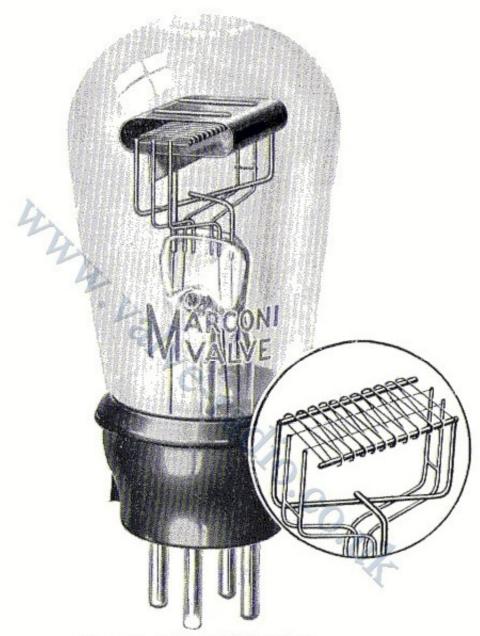

Approximate Overall Dimensions, $103 \times 46 \text{ m/m}$.

Price, 15/-

Approximate Operating Data— Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Anode Current in milliamperes
150	3 to 4.5	3.5 to 2.2
120	3	2.0
90	1.5	1.7

TYPE HL POINT 8



Characteristic Curve of average HL.8 Valve.

for operating from A.C. Mains

TYPE P POINT 8

DULL EMITTER A.C. LOW FREQUENCY AND POWER AMPLIFYING VALVE.

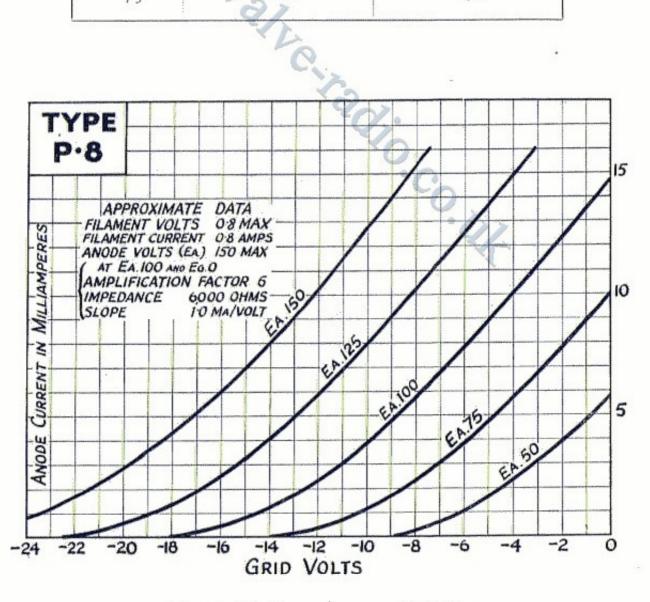
Approximate Overall Dimensions, $103 \times 46 \text{ m/m}$

Fil. Volts
Fil. Currento.8 amps.
Anode Volts 150 max.
*Amp. Factor6
*Impedance6,000 ohms.
*Normal Slope1.0 Ma/v.
*At Anode Volts 100 Grid Volts 0

Price, 17/6

The P.8 is a valve designed to work without a low tension battery. The filament should be operated directly from the Alternating Current Mains through a suitable transformer. For this purpose it is constructed to consume a moderately high current at a very low voltage; this has the effect of materially reducing the introduction of A.C. hum into the Receiving set.

The valve has a low impedance, making it suitable as a low frequency or power amplifier.


For greater output any Marconi Super Power valve can be used in the last stage in conjunction with a suitable filament transformer.

TYPE, P POINT 8

To avoid hum, the grid return lead should be taken to the slider or centre point of a potentiometer connected across the filament.

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Negative Grid Bias Volts	Average Anode Current in milliamperes
150	12	10.0
125	10.5	7.5
100	7.5	6.0
75	6.0	4.0

Characteristic Curve of average P.8 Valve.

for operation from A.C. Mains

TYPE PT POINT 8

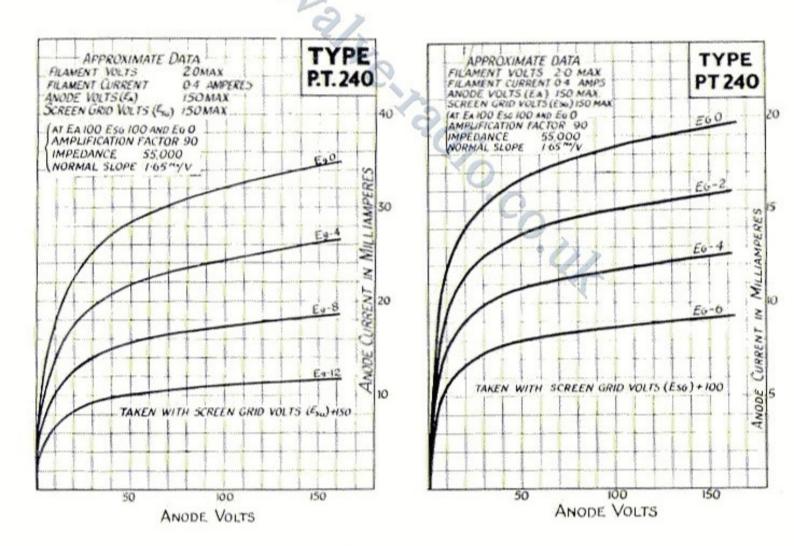
DULL EMITTER A.C. PENTODE LOW FREQUENCY AMPLIFYING VALVE.

Approximate Overall Dimensions, $110 \times 51 \ m/m$.

The Pentode Point 8 is an entirely new design of valve, designed for use in the last stage of amplifiers operating from A.C. mains. Its construction embodies three grids in addition to the filament and anode. The innermost is the control grid, and is connected to the ordinary grid pin on the cap. The middle or screen grid is connected to a small terminal on the side of the cap, and the third grid is joined internally to the filament.

The filament should be operated from the A.C. supply, fed through a suitable transformer. For this purpose it is constructed to consume a moderately high current at very low filament voltage.

The characteristic of the Pentode Point 8 is the large output in conjunction with high amplification factor, thus making it very suitable in the last stage only of sets where it is desired to amplify weak signals without the use of an additional low frequency amplifying valve.


Filament volts	o.8 max.
Filament current .	
Anode volts	150 max.
Screen grid volts	150 max.

*Amplificat	ion fa	ctor			75
*Impedance	2		45,	000	ohms.
*Normal S	lope		I	.65	Ma/v.
	Price	e, 27	6		

TYPE PT 240

Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Screen Volts	Negative Gric Bias Volts	Average Anode Current in milliamperes
150	150	9	16
120	9100	6	9

for use with 2-volt Accumulator

TYPE PT 235

DULL EMITTER PENTODE LOW FREQUENCY AMPLIFYING VALVE

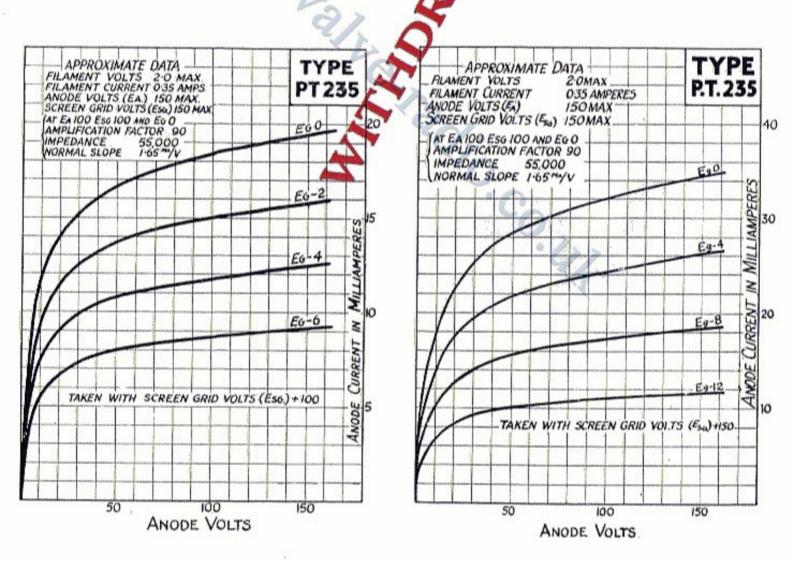
Approximate Overall Dimensions, $110 \times 51 \text{ m/m}$.

The PT 235 is an entirely new design, being constructed with three grids, invaddition to the filament and anoth. The innermost of these three grids is the control grid connected to the ordinary grid pin; the middle grid is connected to a small terminal on the side of the cap, and the third is joined internally to the filament.

The characteristics of the PT 235 is the large output in conjunction with high amplification factor, this making it very suitable in the last stage only of sets where it is desired to amplify weak signals without the use of an additional low frequency amplifying valve.

Price, 25/-

Filament Volts	2.0 max.
Filament Current	0.35 amps.
Anode Volts (Ea.)	150 max.
Screen Grid Volts (Esg)	150 max.


*Amplification	Factor	90

- *Impedance 55,000 ohms.

TYPE PT 235

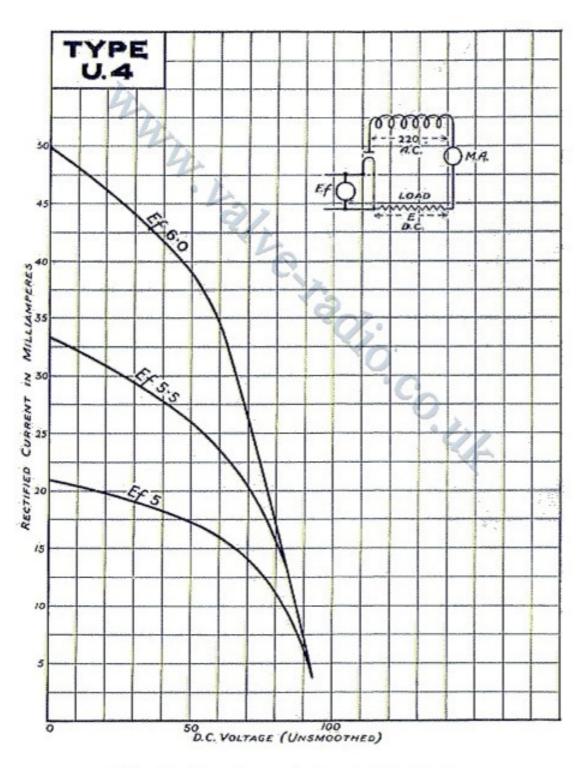
Approximate Operating Data-Neglecting Resistance of Output Circuit.

Anode Volts	Screen Volts	Negative Grid Bias Volts	Average Anode Current in milliamperes
150	150	9	16
120	100	6	9

TYPE U4

RECTIFYING VALVE

Approximate Dimensions, $125 m/m \times 56 m/m$.


A Two-electrode Dull-emitter Valve designed for use as a rectifier for supplying high-tension current for wireless receivers from alternating current mains through a suitable smoothing circuit. The valve provides half-wave rectification at Alternating Current input voltages up to 220 volts (R.M.S.). The maximum rectified current, as measured with a moving coil meter, should not exceed 15 milliamps. This current is sufficient for most receivers other than those employing special power valves.

The normal filament voltage is 5.8 volts and it is important that this voltage should not become less than 5.6 or more than 6.0 volts through variations in the supply voltage or any other reason, otherwise its life will be considerably shortened. The rectified voltage must not, in any case, be adjusted by dimming the filament as this is harmful to the valve. If adjustment is desired other than that provided by transformer tappings a variable high-resistance should be connected in series with the load.

Filament Volts	 	 		5.6/6.0
Filament Current	 	 		.25 amps.
Anode Volts (R.M.S.)	 	 		220 max,
Impedance	 	 	T	200 ohms,
Max. rectified current	 1.1.4	 	15 mi	lliamperes.

TYPE U 4

RECTIFIER

Characteristic Curve of Average U 4 Valve.

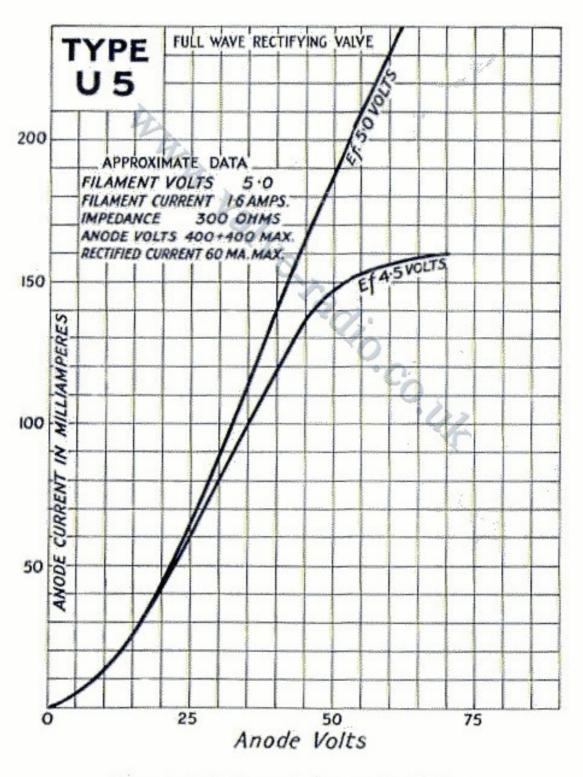
TYPE U 5

FULL WAVE RECTIFYING VALVE

Approximate Dimensions, $135 \text{ m/m} \times 56 \text{ m/m}$.

An entirely new departure in rectifying valves since it incorporates a double electrode system in one bulb, providing rectification of both halves of the Alternating Current wave. One of the principal advantages of this system is the substantial simplification which becomes possible in the design of the smoothing system. It is therefore particularly suitable for supplying all types of wireless receiving sets with H.T. from A.C. mains through a suitable smoothing circuit. The filament is designed for a long life with ample and constant emission throughout, when operated at its rated voltage.

The input A.C. voltage may be taken up to 400 + 400 volts (R.M.S.) and the rectified current should not exceed 60 milliamperes on a moving coil meter. Variation in output voltage should never be made by dimming the filament, but may be made as follows:—


- 1. By tappings in the transformer secondary.
- By the use of high resistance in series with the output.
- By the use of a potentiometer.
 In this case, however, the total current taken by the potentiometer and load must not be greater than 50 milliamperes.

Filament volts	 	 	, 5.0
Filament current	 	 	1.6 amps.
Anode volts (R.M.S.)	 	 	400 + 400 max.
Impedance	 	 	300 ohms.
Max. rectified current	 	 	60 milliamperes.

Price, 20/-

TYPE U 5

RECTIFIER

Characteristic Curve of Average U 5 Valve.

TYPE U8

DULL EMITTER, FULL WAVE RECTIFYING VALVE.

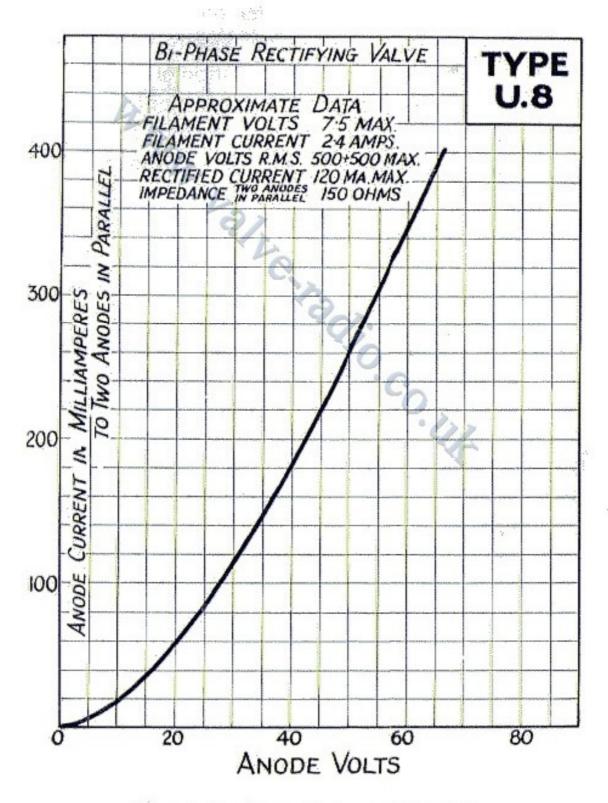
Approximate Overall Dimensions, $145 \times 62 \text{ m/m}$.

120 milliamperes max.

Price, 22/6

The U 8 type valve is a dull emitter rectifying valve incorporating a dual electrode system in one bulb. Rectification of both half cycles of the A.C. wave is obtained when the valve is used in High Tension Battery Eliminators fed from A.C. mains, with a consequent simplification of the necessary smoothing system.

The input voltage to the anodes should not exceed 500 volts RMS, and the rectified current as measured on a moving coil meter should not exceed 120 milliamperes. The output of this valve when fed through suitable Power Amplifying valves is sufficient for the operation of Loud Speakers of the moving coil type, and may also be used for supplying the field current to suitably designed coils of the same instruments.


The filament voltage should not exceed 7.5 volts, and the output voltage should not be controlled by variation of the filament brilliancy. Attention to these details will ensure a long useful life.

Variation in output voltage may be obtained in the following manner.

- 1. By tappings on the transformer secondary
- By the use of resistances in series with the output.
- By the use of a potentiometer. The sum of the potentiometer and load currents must not exceed the maximum output current of 120 milliamperes.

TYPE U8

RECTIFIER

Characteristic Curve of Average U 8 Valve.

TYPE U9

DULL EMITTER FULL WAVE RECTIFYING VALVE

Approximate Overall Dimensions, 135×56m/m.

Filament volts 4.0 max.

Filament current 1.0 amp.

Anode volts (max.)

250 + 250 RMS.

Impedance (two anodes in parallel) 220 ohms.

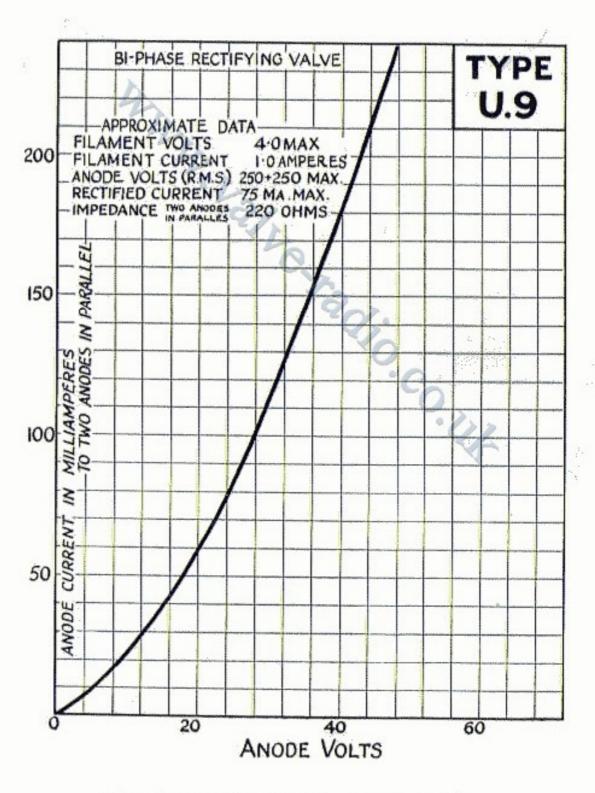
Rectified current

Price, 20i-

75 milliamperes (max.)

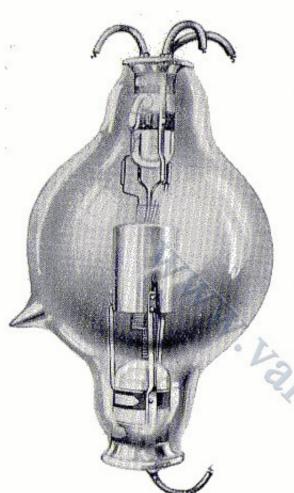
The U 9 type valve is a dull emitter rectifying valve incorporating a dual electrode system in one bulb. Rectification of both half cycles of the A.C. wave is obtained, when the valve is used in High Tension Battery Eliminators fed from A.C. mains, with a consequent simplification of the necessary smoothing system.

The input voltage to the anodes should not exceed 250 volts RMS, and the rectified current as measured on a moving coil meter should not exceed 75 milliamperes. The output of the U 9 is suitable for the operation of multi-valve receivers, and when used in conjunction with Super Power Valves is sufficient for loud speakers of the larger types.

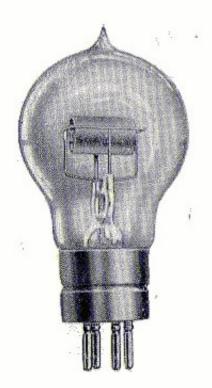

The filament voltage should not exceed 4.0 volts, and the output voltage should not be controlled by variation of the filament brilliancy. Attention to these details will ensure a long useful life.

Variation in output voltage may be obtained in the following manner:—

- By tappings on the transformer secondary.
- By the use of resistances in series with the output.
- By the use of a potentiometer.
 The sum of the potentiometer and load currents must not exceed the maximum output current of 75 milliamperes.


TYPE U9

RECTIFIER



Characteristic Curve of Average U 9 Valve.

MARCONI TRANSMITTING VALVES

T 50 Approximate Overall Dimensions, 145 × 76 m/m.

A small power, double ended Transmitting Valve, tested dissipating 50 watts at the anode, suitable for voltages up to 1,500.

TYPE T50

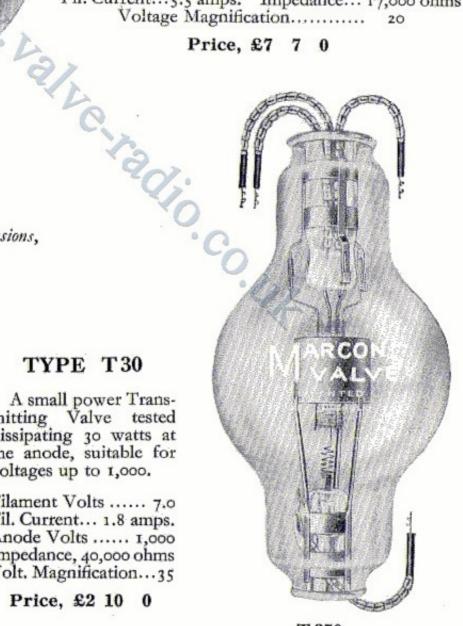
Fil. Current...2.5 amps. Impedance...35,000 ohms Voltage Magnification...... 30

Price, £5 12 6

TYPE T250

A Transmitting Valve, tested dissipating 250 watts at the anode, suitable for voltages up to 4,000

Filament Volts.....12.5 Anode Volts, 2,000-4,000 Fil. Current...5.5 amps. Impedance... 17,000 ohms Voltage Magnification..... 20

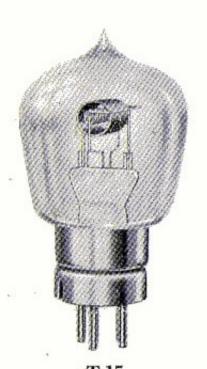

Price, £7 7 0

A small power Trans-mitting Valve tested dissipating 30 watts at the anode, suitable for voltages up to 1,000.

Filament Volts 7.0 Fil. Current... 1.8 amps. Anode Volts 1,000 Impedance, 40,000 ohms Volt. Magnification...35

Price, £2 10 0

T 250 Approximate Overall Dimensions, 280 × 120 m/m.


T 30

MARCONI

TRANSMITTING VALVES

DET 1 sw
Approximate Overall
Dimensions, 240 × 76 m/m.

T 15
Approximate Overall
Dimensions, 115 × 55 m/m.

TYPE DET 1 sw

A double ended dull emitter Transmitting Valve, designed for short wave working on wavelengths down to metres.

Under normal oscillating conditions at 15 metres the anode current should not exceed 80 m.a. at 800 volts. At 10 metres, these figures should not be more than 80 m.a. at 500 volts; and at 100 metres, 80 m.a. at 1,000 volts.

Filament Volts 6.0 Fil. Current 2.0 amps. Amplification Factor ... 8.5 Impedance.....5,000 ohms.

Price, £7 5 0

TYPE DET1

A small power Transmitting Valve with a dull emitting filament. Tested dissipating 40 watts at the anode and suitable for voltages up to 1,000.

Filament Volts.......6.0 Filament Current, 1.0 amps. Anode Volts ... 1,000 max. Amplification Factor.....11 Impedance.....6,000 ohms.

Price, £5 5 0

DET 1

Approximate Overall Dimensions, 180 × 78 m/m.

TYPE T 15

A small power Transmitting Valve, tested dissipating vatts at the anode, suitable for voltages up to 600.

Filament Volts 5.5	-6.0
Filament Current	
Anode Volts	600
Impedance 50,000 ol	ims.
Voltage Magnification	25

Price, £1 10 0